Activated Hydrochar Prepared from Longan Fruit (Dimocarpus longan Lour.) Peel via Hydrothermal Carbonization-NaOH Activation for Cationic Dyes Removal

Q2 Pharmacology, Toxicology and Pharmaceutics
N. Palapa, A. Wijaya, N. Ahmad, Amri Amri, R. Mohadi, A. Lesbani
{"title":"Activated Hydrochar Prepared from Longan Fruit (Dimocarpus longan Lour.) Peel via Hydrothermal Carbonization-NaOH Activation for Cationic Dyes Removal","authors":"N. Palapa, A. Wijaya, N. Ahmad, Amri Amri, R. Mohadi, A. Lesbani","doi":"10.26554/sti.2023.8.3.461-470","DOIUrl":null,"url":null,"abstract":"Hydrothermal carbonization is recognized as a method of processing biomass into carbon-rich products due to its energy-saving and environmental-friendly advantages. In this study, two types of hydrochar were prepared from Longan Fruit (Dimocarpus longan Lour.) Peel via hydrothermal carbonization at temperatures of 190°C and 250°C and activated using NaOH (HC-ACT 190 and HC-ACT 250) for removal of malachite green (MG) and rhodamine B (RhB) dyes. The maximum capacity for MG dye removal using HC-ACT 190 and HC-ACT 250 materials was 172.414 mg/g and 250 mg/g, while for RhB dye was 111.111 mg/g and 151.515 mg/g, respectively. The optimum pH was obtained at pH 6 for MG and pH 3 for RhB with adsorption equilibrium time occurring at 90 minutes. The kinetic study shows that the adsorption process follows pseudo-second-order kinetics, while the isotherm model was determined by the Langmuir isotherm model. Materials can be reused effectively for at least 3 cycles with an adsorption percentage of MG dye removal using HC-ACT 190 and HC-ACT 250 materials was 69.91% and 83.15% respectively, while for RhB dye was 35.79% and 55.6% respectively. The material is more selective on MG dye compared to RhB dye based on the selectivity test on the adsorption of the dye mixture.","PeriodicalId":21644,"journal":{"name":"Science and Technology Indonesia","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology Indonesia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26554/sti.2023.8.3.461-470","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrothermal carbonization is recognized as a method of processing biomass into carbon-rich products due to its energy-saving and environmental-friendly advantages. In this study, two types of hydrochar were prepared from Longan Fruit (Dimocarpus longan Lour.) Peel via hydrothermal carbonization at temperatures of 190°C and 250°C and activated using NaOH (HC-ACT 190 and HC-ACT 250) for removal of malachite green (MG) and rhodamine B (RhB) dyes. The maximum capacity for MG dye removal using HC-ACT 190 and HC-ACT 250 materials was 172.414 mg/g and 250 mg/g, while for RhB dye was 111.111 mg/g and 151.515 mg/g, respectively. The optimum pH was obtained at pH 6 for MG and pH 3 for RhB with adsorption equilibrium time occurring at 90 minutes. The kinetic study shows that the adsorption process follows pseudo-second-order kinetics, while the isotherm model was determined by the Langmuir isotherm model. Materials can be reused effectively for at least 3 cycles with an adsorption percentage of MG dye removal using HC-ACT 190 and HC-ACT 250 materials was 69.91% and 83.15% respectively, while for RhB dye was 35.79% and 55.6% respectively. The material is more selective on MG dye compared to RhB dye based on the selectivity test on the adsorption of the dye mixture.
水热碳化-氢氧化钠活化法从桂圆皮中制备活性炭用于阳离子染料去除
水热碳化是一种将生物质加工成富碳产品的方法,具有节能环保的优点。在本研究中,以桂圆皮为原料,在190°C和250°C的温度下通过水热碳化制备了两种类型的水炭,并用NaOH(HC-ACT 190和HC-ACT 250)活化以去除孔雀石绿(MG)和罗丹明B(RhB)染料。使用HC-ACT 190和HC-ACT 250材料去除MG染料的最大能力分别为172.414 MG/g和250 MG/g,而RhB染料的最大去除能力分别为111.111 MG/g和151.515 MG/g。在吸附平衡时间为90分钟的情况下,MG和RhB的最佳pH分别为6和3。动力学研究表明,吸附过程遵循拟二级动力学,而等温线模型由Langmuir等温线模型确定。材料可有效重复使用至少3个循环,使用HC-ACT 190和HC-ACT 250材料对MG染料的去除率分别为69.91%和83.15%,而对RhB染料的吸附率分别为35.79%和55.6%。基于对染料混合物吸附的选择性测试,与RhB染料相比,该材料对MG染料的选择性更强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science and Technology Indonesia
Science and Technology Indonesia Pharmacology, Toxicology and Pharmaceutics-Pharmacology, Toxicology and Pharmaceutics (miscellaneous)
CiteScore
1.80
自引率
0.00%
发文量
72
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信