MnO2 Nanorods Embedded Reduced Graphene Oxide Nanocomposite with Ultrahigh Specific Capacitance and Excellent Cyclic Stability for High Performance Supercapacitors

IF 2.4 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
M. Sajjad, A. Iqbal, Muhammad Ibrar Khan, M. Qureshi, Y. Khan
{"title":"MnO2 Nanorods Embedded Reduced Graphene Oxide Nanocomposite with Ultrahigh Specific Capacitance and Excellent Cyclic Stability for High Performance Supercapacitors","authors":"M. Sajjad, A. Iqbal, Muhammad Ibrar Khan, M. Qureshi, Y. Khan","doi":"10.1142/s2251237319500059","DOIUrl":null,"url":null,"abstract":"Excellent cycling stability along with a high specific capacitance of the electrode material is the primary requirement for supercapacitor (SC) in recent years. Exceptionally simple and cost-effective solution process is employed for the first time to prepare [Formula: see text]-MnO2/rGO composites, in which KMnO4 content varies from (2[Formula: see text]mg, 4[Formula: see text]mg, 6[Formula: see text]mg and 8[Formula: see text]mg). The morphological analysis showed that [Formula: see text]-MnO2/rGO composites possess nanorod like morphology and were fully covered with rGO sheet. Among all composites, the sample with 6[Formula: see text]mg content of KMnO4 denoted as [Formula: see text]-MnO2/rGO composite (S–3) showed excellent supercapacitive performance with a specific capacitance of 720[Formula: see text]F/g at a current density of 4 A g[Formula: see text] with excellent cycling stability of 93% after 2000 cycles. Furthermore, these nanocomposites showed excellent supercapacitive properties with specific capacitances of 720–498 F/g at the current density of 4 A g[Formula: see text] with cycling stabilities of 71%, 68% and 60%, respectively.","PeriodicalId":16406,"journal":{"name":"Journal of Molecular and Engineering Materials","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2019-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/s2251237319500059","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular and Engineering Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s2251237319500059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 7

Abstract

Excellent cycling stability along with a high specific capacitance of the electrode material is the primary requirement for supercapacitor (SC) in recent years. Exceptionally simple and cost-effective solution process is employed for the first time to prepare [Formula: see text]-MnO2/rGO composites, in which KMnO4 content varies from (2[Formula: see text]mg, 4[Formula: see text]mg, 6[Formula: see text]mg and 8[Formula: see text]mg). The morphological analysis showed that [Formula: see text]-MnO2/rGO composites possess nanorod like morphology and were fully covered with rGO sheet. Among all composites, the sample with 6[Formula: see text]mg content of KMnO4 denoted as [Formula: see text]-MnO2/rGO composite (S–3) showed excellent supercapacitive performance with a specific capacitance of 720[Formula: see text]F/g at a current density of 4 A g[Formula: see text] with excellent cycling stability of 93% after 2000 cycles. Furthermore, these nanocomposites showed excellent supercapacitive properties with specific capacitances of 720–498 F/g at the current density of 4 A g[Formula: see text] with cycling stabilities of 71%, 68% and 60%, respectively.
用于高性能超级电容器的具有超高比电容和优异循环稳定性的MnO2纳米棒嵌入还原氧化石墨烯纳米复合材料
优异的循环稳定性以及电极材料的高比电容是近年来对超级电容器(SC)的主要要求。首次采用异常简单且具有成本效益的溶液工艺制备[式:见正文]-MnO2/rGO复合材料,其中KMnO4含量从(2[式:参见正文]mg、4[式:详见正文]mg,6[式:请见正文]mg和8[式:参阅正文]mg)变化。形态分析表明,[式:见正文]-MnO2/rGO复合材料具有纳米棒状形态,并被rGO片完全覆盖。在所有复合材料中,具有6[式:见正文]mg KMnO4含量的样品(表示为[式:参见正文]-MnO2/rGO复合材料(S–3))在4 a g的电流密度下显示出优异的超级电容性能,比电容为720[式:详见正文]F/g[式:请见正文],2000次循环后具有93%的优异循环稳定性。此外,这些纳米复合材料显示出优异的超级电容性能,在4 A g的电流密度下,比电容为720–498 F/g[公式:见正文],循环稳定性分别为71%、68%和60%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Molecular and Engineering Materials
Journal of Molecular and Engineering Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
自引率
0.00%
发文量
13
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信