{"title":"Heat and mass transfer with viscous dissipation in horizontal channel partially occupied by porous medium in the presence of oscillatory suction","authors":"P. Sharma, R. Saboo","doi":"10.3329/JNAME.V14I2.25584","DOIUrl":null,"url":null,"abstract":"This paper deals with unsteady oscillatory flow of viscous incompressible fluid with heat & mass transfer in a horizontal channel partially occupied by porous medium following the Darcy-Brinkman model. The interior territory of the channel consists of two regions; one of them is filled with porous material and second is clear fluid. At the porous medium fluid interface, interfacial coupling conditions for the fluid velocity, temperature and concentration were used to derive the analytical solution. The effects of pertinent physical fluid parameter like porosity, viscosity ratio, density ratio etc. on velocity, temperature and concentration distribution are considered and demonstrated through graphs. Also, the non-dimensional Skin-friction coefficient, Nusselt number and Sherwood number have been calculated and reported in tabular form.","PeriodicalId":55961,"journal":{"name":"Journal of Naval Architecture and Marine Engineering","volume":"14 1","pages":"101-114"},"PeriodicalIF":1.2000,"publicationDate":"2017-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3329/JNAME.V14I2.25584","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Naval Architecture and Marine Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3329/JNAME.V14I2.25584","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 5
Abstract
This paper deals with unsteady oscillatory flow of viscous incompressible fluid with heat & mass transfer in a horizontal channel partially occupied by porous medium following the Darcy-Brinkman model. The interior territory of the channel consists of two regions; one of them is filled with porous material and second is clear fluid. At the porous medium fluid interface, interfacial coupling conditions for the fluid velocity, temperature and concentration were used to derive the analytical solution. The effects of pertinent physical fluid parameter like porosity, viscosity ratio, density ratio etc. on velocity, temperature and concentration distribution are considered and demonstrated through graphs. Also, the non-dimensional Skin-friction coefficient, Nusselt number and Sherwood number have been calculated and reported in tabular form.
期刊介绍:
TJPRC: Journal of Naval Architecture and Marine Engineering (JNAME) is a peer reviewed journal and it provides a forum for engineers and scientists from a wide range of disciplines to present and discuss various phenomena in the utilization and preservation of ocean environment. Without being limited by the traditional categorization, it is encouraged to present advanced technology development and scientific research, as long as they are aimed for more and better human engagement with ocean environment. Topics include, but not limited to: marine hydrodynamics; structural mechanics; marine propulsion system; design methodology & practice; production technology; system dynamics & control; marine equipment technology; materials science; under-water acoustics; satellite observations; and information technology related to ship and marine systems; ocean energy systems; marine environmental engineering; maritime safety engineering; polar & arctic engineering; coastal & port engineering; aqua-cultural engineering; sub-sea engineering; and specialized water-craft engineering. International Journal of Naval Architecture and Ocean Engineering is published quarterly by the Society of Naval Architects of Korea. In addition to original, full-length, refereed papers, review articles by leading authorities and articulated technical discussions of highly technical interest are also published.