NEURAL NETWORK AND CONVOLUTIONAL ALGORITH TO EXTRACT SHAPES BY E-MEDICUS APPLICATION

Q4 Engineering
T. Rymarczyk, Barbara Stefaniak, P. Adamkiewicz
{"title":"NEURAL NETWORK AND CONVOLUTIONAL ALGORITH TO EXTRACT SHAPES BY E-MEDICUS APPLICATION","authors":"T. Rymarczyk, Barbara Stefaniak, P. Adamkiewicz","doi":"10.5604/01.3001.0012.5282","DOIUrl":null,"url":null,"abstract":"The solution shows the architecture of the system collecting and analyzing data. There was tried to develop algorithms to image segmentation. These algorithms are needed to identify arbitrary number of phases for the segmentation problem. With the use of algorithms such as the level set method, neural networks and deep learning methods, it can obtain a quicker diagnosis and automatically marking areas of the interest region in medical images.","PeriodicalId":53131,"journal":{"name":"Informatyka Automatyka Pomiary w Gospodarce i Ochronie Srodowiska","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informatyka Automatyka Pomiary w Gospodarce i Ochronie Srodowiska","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5604/01.3001.0012.5282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

Abstract

The solution shows the architecture of the system collecting and analyzing data. There was tried to develop algorithms to image segmentation. These algorithms are needed to identify arbitrary number of phases for the segmentation problem. With the use of algorithms such as the level set method, neural networks and deep learning methods, it can obtain a quicker diagnosis and automatically marking areas of the interest region in medical images.
神经网络和卷积算法在电子医学中的应用
该解决方案展示了数据采集和分析系统的体系结构。有人试图开发图像分割算法。需要这些算法来识别分割问题的任意数量的相位。通过使用水平集方法、神经网络和深度学习方法等算法,它可以获得更快的诊断,并自动标记医学图像中的感兴趣区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
40
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信