{"title":"The mitochondrial tRNAAsp T7561C, tRNAHis C12153T and A12172G mutations may be associated with essential hypertension in a Han Chinese pedigree.","authors":"Haiying Fu, Jinming Sun, Xiaoyan Xu","doi":"10.1159/000524163","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Mutations in mitochondrial tRNA (mt-tRNA) are the important causes for maternally inherited hypertension, however, the pathophysiology of mt-tRNA mutations in clinical expression of hypertension remains poorly understood.</p><p><strong>Material and methods: </strong>In this study, we report the molecular features of a Han Chinese pedigree with maternally transmitted essential hypertension. The entire mitochondrial genomes are PCR amplified and sequenced, Moreover, phylogenetic analysis, haplogroup analysis, as well as pathogenicity scoring system are used to assess the potential roles for mtDNA mutations.</p><p><strong>Results: </strong>Strikingly, among ten matrilineal relatives, three of them suffer from variable degree of hypertension at different age at onset. Sequence analysis of the complete mitochondrial genomes suggests the presence of three possible pathogenic mtDNA mutations: tRNAAsp T7561C, tRNAHis C12153T and A12172G, together with a set of variants belonging to East Asian mitochondrial haplogroup M7a. Interestingly, the T7561C mutation occurs at position 44 in the variable region of tRNAAsp, while the C12153T and A12172G mutations are localized at extremely conserved nucleotides in the D-arm and anticodon stem of tRNAHis gene, respectively, which are critical for tRNA steady-state level and function.</p><p><strong>Conclusions: </strong>Mitochondrial T7561C, C12153T and A12172G mutations may lead to the failure in tRNAs metabolism, and cause mitochondrial dysfunction that is responsible for hypertension. However, the homoplasmy form of mt-tRNA mutations, incomplete penetrance of hypertension suggest that T7561C, C12153T and A12172G mutations are insufficient to produce the clinical phenotype, hence, other risk factors such as environmental factors, nuclear genes and epigenetic modifications may contribute to the phenotypic manifestation of maternally inherited hypertension in this Chinese pedigree.</p>","PeriodicalId":13226,"journal":{"name":"Human Heredity","volume":"87 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Heredity","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1159/000524163","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: Mutations in mitochondrial tRNA (mt-tRNA) are the important causes for maternally inherited hypertension, however, the pathophysiology of mt-tRNA mutations in clinical expression of hypertension remains poorly understood.
Material and methods: In this study, we report the molecular features of a Han Chinese pedigree with maternally transmitted essential hypertension. The entire mitochondrial genomes are PCR amplified and sequenced, Moreover, phylogenetic analysis, haplogroup analysis, as well as pathogenicity scoring system are used to assess the potential roles for mtDNA mutations.
Results: Strikingly, among ten matrilineal relatives, three of them suffer from variable degree of hypertension at different age at onset. Sequence analysis of the complete mitochondrial genomes suggests the presence of three possible pathogenic mtDNA mutations: tRNAAsp T7561C, tRNAHis C12153T and A12172G, together with a set of variants belonging to East Asian mitochondrial haplogroup M7a. Interestingly, the T7561C mutation occurs at position 44 in the variable region of tRNAAsp, while the C12153T and A12172G mutations are localized at extremely conserved nucleotides in the D-arm and anticodon stem of tRNAHis gene, respectively, which are critical for tRNA steady-state level and function.
Conclusions: Mitochondrial T7561C, C12153T and A12172G mutations may lead to the failure in tRNAs metabolism, and cause mitochondrial dysfunction that is responsible for hypertension. However, the homoplasmy form of mt-tRNA mutations, incomplete penetrance of hypertension suggest that T7561C, C12153T and A12172G mutations are insufficient to produce the clinical phenotype, hence, other risk factors such as environmental factors, nuclear genes and epigenetic modifications may contribute to the phenotypic manifestation of maternally inherited hypertension in this Chinese pedigree.
期刊介绍:
Gathering original research reports and short communications from all over the world, ''Human Heredity'' is devoted to methodological and applied research on the genetics of human populations, association and linkage analysis, genetic mechanisms of disease, and new methods for statistical genetics, for example, analysis of rare variants and results from next generation sequencing. The value of this information to many branches of medicine is shown by the number of citations the journal receives in fields ranging from immunology and hematology to epidemiology and public health planning, and the fact that at least 50% of all ''Human Heredity'' papers are still cited more than 8 years after publication (according to ISI Journal Citation Reports). Special issues on methodological topics (such as ‘Consanguinity and Genomics’ in 2014; ‘Analyzing Rare Variants in Complex Diseases’ in 2012) or reviews of advances in particular fields (‘Genetic Diversity in European Populations: Evolutionary Evidence and Medical Implications’ in 2014; ‘Genes and the Environment in Obesity’ in 2013) are published every year. Renowned experts in the field are invited to contribute to these special issues.