Propagation of chaos for stochastic particle systems with singular mean-field interaction of Lq−Lp type

IF 0.5 4区 数学 Q4 STATISTICS & PROBABILITY
Milica Tomavsevi'c
{"title":"Propagation of chaos for stochastic particle systems with singular mean-field interaction of Lq−Lp type","authors":"Milica Tomavsevi'c","doi":"10.1214/23-ecp539","DOIUrl":null,"url":null,"abstract":"In this work, we prove the well-posedness and propagation of chaos for a stochastic particle system in mean-field interaction under the assumption that the interacting kernel belongs to a suitable $L_t^q-L_x^p$ space. Contrary to the large deviation principle approach recently proposed in [2], the main ingredient of the proof here are the \\textit{Partial Girsanov transformations} introduced in [3] and developed in a general setting in this work.","PeriodicalId":50543,"journal":{"name":"Electronic Communications in Probability","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Communications in Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/23-ecp539","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 7

Abstract

In this work, we prove the well-posedness and propagation of chaos for a stochastic particle system in mean-field interaction under the assumption that the interacting kernel belongs to a suitable $L_t^q-L_x^p$ space. Contrary to the large deviation principle approach recently proposed in [2], the main ingredient of the proof here are the \textit{Partial Girsanov transformations} introduced in [3] and developed in a general setting in this work.
Lq−Lp型奇异平均场相互作用随机粒子系统的混沌传播
在这项工作中,我们证明了在平均场相互作用中随机粒子系统的混沌的适定性和传播,假设相互作用核属于一个合适的$L_t^q-L_x^p$空间。与[2]中最近提出的大偏差原理方法相反,这里的证明的主要成分是[3]中引入的\textit{Partial Girsanov变换},并在本工作的一般环境中发展起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Electronic Communications in Probability
Electronic Communications in Probability 工程技术-统计学与概率论
CiteScore
1.00
自引率
0.00%
发文量
38
审稿时长
6-12 weeks
期刊介绍: The Electronic Communications in Probability (ECP) publishes short research articles in probability theory. Its sister journal, the Electronic Journal of Probability (EJP), publishes full-length articles in probability theory. Short papers, those less than 12 pages, should be submitted to ECP first. EJP and ECP share the same editorial board, but with different Editors in Chief.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信