Investigating scientific mobility in co-authorship networks using multilayer temporal motifs

IF 1.4 Q2 SOCIAL SCIENCES, INTERDISCIPLINARY
Hanjo D. Boekhout, V. Traag, F. Takes
{"title":"Investigating scientific mobility in co-authorship networks using multilayer temporal motifs","authors":"Hanjo D. Boekhout, V. Traag, F. Takes","doi":"10.1017/nws.2021.12","DOIUrl":null,"url":null,"abstract":"Abstract This paper introduces a framework for understanding complex temporal interaction patterns in large-scale scientific collaboration networks. In particular, we investigate how two key concepts in science studies, scientific collaboration and scientific mobility, are related and possibly differ between fields. We do so by analyzing multilayer temporal motifs: small recurring configurations of nodes and edges. Driven by the problem that many papers share the same publication year, we first provide a methodological contribution: an efficient counting algorithm for multilayer temporal motifs with concurrent edges. Next, we introduce a systematic categorization of the multilayer temporal motifs, such that each category reflects a pattern of behavior relevant to scientific collaboration and mobility. Here, a key question concerns the causal direction: does mobility lead to collaboration or vice versa? Applying this framework to scientific collaboration networks extracted from Web of Science (WoS) consisting of up to 7.7 million nodes (authors) and 94 million edges (collaborations), we find that international collaboration and international mobility reciprocally influence one another. Additionally, we find that Social sciences & Humanities (SSH) scholars co-author to a greater extent with authors at a distance, while Mathematics & Computer science (M&C) scholars tend to continue to collaborate within the established knowledge network and organization.","PeriodicalId":51827,"journal":{"name":"Network Science","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/nws.2021.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SOCIAL SCIENCES, INTERDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract This paper introduces a framework for understanding complex temporal interaction patterns in large-scale scientific collaboration networks. In particular, we investigate how two key concepts in science studies, scientific collaboration and scientific mobility, are related and possibly differ between fields. We do so by analyzing multilayer temporal motifs: small recurring configurations of nodes and edges. Driven by the problem that many papers share the same publication year, we first provide a methodological contribution: an efficient counting algorithm for multilayer temporal motifs with concurrent edges. Next, we introduce a systematic categorization of the multilayer temporal motifs, such that each category reflects a pattern of behavior relevant to scientific collaboration and mobility. Here, a key question concerns the causal direction: does mobility lead to collaboration or vice versa? Applying this framework to scientific collaboration networks extracted from Web of Science (WoS) consisting of up to 7.7 million nodes (authors) and 94 million edges (collaborations), we find that international collaboration and international mobility reciprocally influence one another. Additionally, we find that Social sciences & Humanities (SSH) scholars co-author to a greater extent with authors at a distance, while Mathematics & Computer science (M&C) scholars tend to continue to collaborate within the established knowledge network and organization.
使用多层时间基序研究合著者网络中的科学流动性
摘要本文介绍了一个理解大规模科学协作网络中复杂时间交互模式的框架。特别是,我们研究了科学研究中的两个关键概念,科学协作和科学流动,是如何相互关联的,并且在不同领域之间可能存在差异。我们通过分析多层时间基序来做到这一点:节点和边的小的重复配置。在许多论文共享同一发表年份的问题的驱动下,我们首先提供了一个方法论贡献:一种具有并发边的多层时间基元的有效计数算法。接下来,我们介绍了多层时间基序的系统分类,使得每个类别都反映了与科学协作和流动相关的行为模式。在这里,一个关键问题涉及因果方向:流动是否会导致合作,反之亦然?将该框架应用于从科学网(WoS)中提取的科学协作网络,该网络由多达770万个节点(作者)和9400万个边缘(协作)组成,我们发现国际协作和国际流动相互影响。此外,我们发现社会科学与人文学科(SSH)学者在更大程度上与远距离的作者合作,而数学与计算机科学(M&C)学者倾向于在既定的知识网络和组织内继续合作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Network Science
Network Science SOCIAL SCIENCES, INTERDISCIPLINARY-
CiteScore
3.50
自引率
5.90%
发文量
24
期刊介绍: Network Science is an important journal for an important discipline - one using the network paradigm, focusing on actors and relational linkages, to inform research, methodology, and applications from many fields across the natural, social, engineering and informational sciences. Given growing understanding of the interconnectedness and globalization of the world, network methods are an increasingly recognized way to research aspects of modern society along with the individuals, organizations, and other actors within it. The discipline is ready for a comprehensive journal, open to papers from all relevant areas. Network Science is a defining work, shaping this discipline. The journal welcomes contributions from researchers in all areas working on network theory, methods, and data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信