Mixed Kalman-Fuzzy Sliding Mode State Observer in Disturbance Rejection Control of a Vibrating Smart Structure

IF 0.8 4区 工程技术 Q4 ACOUSTICS
A. Oveisi, T. Nestorović
{"title":"Mixed Kalman-Fuzzy Sliding Mode State Observer in Disturbance Rejection Control of a Vibrating Smart Structure","authors":"A. Oveisi, T. Nestorović","doi":"10.20855/ijav.2019.24.41365","DOIUrl":null,"url":null,"abstract":"In the controllers that are synthesized on a nominal model of a nonlinear plant, the parametric matched uncertainties and nonlinear/unmodelled dynamics of the high order nature can significantly affect the performance of the closedloop system. On this note, owing to the robust characteristic of the sliding mode observer against modelling perturbations, measurement noise, and unknown disturbances and due to the non-fragile behaviour of the Kalman filter against process noise, a mixed Kalman sliding mode state-observer is proposed and later enhanced by the addition of an intelligent fuzzy agent. In light of the proposed technique, the chattering phenomena and the conservative boundary neighboring layer of the high gain sliding mode observer are addressed. Then, a robust active disturbance rejection controller is developed by using the static feedback of the estimated states using a direct Lyapunov quadratic stability theorem. The reduced order plant for control design purposes is subjected to some simulated square-integrable disturbances and is assumed to have mismatched uncertainties in the system matrices. Finally, the robust performance of the closed-loop scheme with respect to the mentioned perturbation signals and modelling imperfections is tested by implementing the control system on a mechanical vibrating smart cantilever beam.","PeriodicalId":49185,"journal":{"name":"International Journal of Acoustics and Vibration","volume":"24 1","pages":"677-686"},"PeriodicalIF":0.8000,"publicationDate":"2019-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Acoustics and Vibration","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.20855/ijav.2019.24.41365","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 3

Abstract

In the controllers that are synthesized on a nominal model of a nonlinear plant, the parametric matched uncertainties and nonlinear/unmodelled dynamics of the high order nature can significantly affect the performance of the closedloop system. On this note, owing to the robust characteristic of the sliding mode observer against modelling perturbations, measurement noise, and unknown disturbances and due to the non-fragile behaviour of the Kalman filter against process noise, a mixed Kalman sliding mode state-observer is proposed and later enhanced by the addition of an intelligent fuzzy agent. In light of the proposed technique, the chattering phenomena and the conservative boundary neighboring layer of the high gain sliding mode observer are addressed. Then, a robust active disturbance rejection controller is developed by using the static feedback of the estimated states using a direct Lyapunov quadratic stability theorem. The reduced order plant for control design purposes is subjected to some simulated square-integrable disturbances and is assumed to have mismatched uncertainties in the system matrices. Finally, the robust performance of the closed-loop scheme with respect to the mentioned perturbation signals and modelling imperfections is tested by implementing the control system on a mechanical vibrating smart cantilever beam.
振动智能结构抗扰控制中的混合卡尔曼-模糊滑模状态观测器
在非线性对象的标称模型上合成的控制器中,参数匹配的不确定性和高阶性质的非线性/未建模动力学会显著影响闭环系统的性能。在这一点上,由于滑模观测器对建模扰动、测量噪声和未知扰动的鲁棒性,以及卡尔曼滤波器对过程噪声的非脆弱性,提出了一种混合卡尔曼滑模状态观测器,并通过添加智能模糊代理进行了增强。根据所提出的技术,解决了高增益滑模观测器的抖振现象和保守边界邻层问题。然后,利用直接李雅普诺夫二次稳定性定理,利用估计状态的静态反馈,开发了一种鲁棒自抗扰控制器。用于控制设计目的的降阶对象受到一些模拟的平方可积扰动,并且假设系统矩阵中存在不匹配的不确定性。最后,通过在机械振动智能悬臂梁上实现控制系统,测试了闭环方案对上述扰动信号和建模缺陷的鲁棒性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Acoustics and Vibration
International Journal of Acoustics and Vibration ACOUSTICS-ENGINEERING, MECHANICAL
CiteScore
1.60
自引率
10.00%
发文量
0
审稿时长
12 months
期刊介绍: The International Journal of Acoustics and Vibration (IJAV) is the refereed open-access journal of the International Institute of Acoustics and Vibration (IIAV). The IIAV is a non-profit international scientific society founded in 1995. The primary objective of the Institute is to advance the science of acoustics and vibration by creating an international organization that is responsive to the needs of scientists and engineers concerned with acoustics and vibration problems all around the world. Manuscripts of articles, technical notes and letters-to-the-editor should be submitted to the Editor-in-Chief via the on-line submission system. Authors wishing to submit an article need to log in on the IJAV website first. Users logged into the website are able to submit new articles, track the status of their articles already submitted, upload revised articles, responses and/or rebuttals to reviewers, figures, biographies, photographs, copyright transfer agreements, and send comments to the editor. Each time the status of an article submitted changes, the author will also be notified automatically by email. IIAV members (in good standing for at least six months) can publish in IJAV free of charge and their papers will be displayed on-line immediately after they have been edited and laid-out. Non-IIAV members will be required to pay a mandatory Article Processing Charge (APC) of $200 USD if the manuscript is accepted for publication after review. The APC fee allows IIAV to make your research freely available to all readers using the Open Access model. In addition, Non-IIAV members who pay an extra voluntary publication fee (EVPF) of $500 USD will be granted expedited publication in the IJAV Journal and their papers can be displayed on the Internet after acceptance. If the $200 USD (APC) publication fee is not honored, papers will not be published. Authors who do not pay the voluntary fixed fee of $500 USD will have their papers published but there may be a considerable delay. The English text of the papers must be of high quality. If the text submitted is of low quality the manuscript will be more than likely rejected. For authors whose first language is not English, we recommend having their manuscripts reviewed and edited prior to submission by a native English speaker with scientific expertise. There are many commercial editing services which can provide this service at a cost to the authors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信