A Unified Bayesian Framework for Bi-overlapping-Clustering Multi-omics Data via Sparse Matrix Factorization.

Pub Date : 2023-12-01 Epub Date: 2022-07-08 DOI:10.1007/s12561-022-09350-w
Fangting Zhou, Kejun He, James J Cai, Laurie A Davidson, Robert S Chapkin, Yang Ni
{"title":"A Unified Bayesian Framework for Bi-overlapping-Clustering Multi-omics Data via Sparse Matrix Factorization.","authors":"Fangting Zhou, Kejun He, James J Cai, Laurie A Davidson, Robert S Chapkin, Yang Ni","doi":"10.1007/s12561-022-09350-w","DOIUrl":null,"url":null,"abstract":"<p><p>The advances of modern sequencing techniques have generated an unprecedented amount of multi-omics data which provide great opportunities to quantitatively explore functional genomes from different but complementary perspectives. However, distinct modalities/sequencing technologies generate diverse types of data which greatly complicate statistical modeling because uniquely optimized methods are required for handling each type of data. In this paper, we propose a unified framework for Bayesian nonparametric matrix factorization that infers overlapping bi-clusters for multi-omics data. The proposed method adaptively discretizes different types of observations into common latent states on which cluster structures are built hierarchically. The proposed Bayesian nonparametric method is able to automatically determine the number of clusters. We demonstrate the utility of the proposed method using simulation studies and applications to a single-cell RNA-sequencing dataset, a combination of single-cell RNA-sequencing and single-cell ATAC-sequencing dataset, a bulk RNA-sequencing dataset, and a DNA methylation dataset which reveal several interesting findings that are consistent with biological literature.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10766378/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12561-022-09350-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/7/8 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The advances of modern sequencing techniques have generated an unprecedented amount of multi-omics data which provide great opportunities to quantitatively explore functional genomes from different but complementary perspectives. However, distinct modalities/sequencing technologies generate diverse types of data which greatly complicate statistical modeling because uniquely optimized methods are required for handling each type of data. In this paper, we propose a unified framework for Bayesian nonparametric matrix factorization that infers overlapping bi-clusters for multi-omics data. The proposed method adaptively discretizes different types of observations into common latent states on which cluster structures are built hierarchically. The proposed Bayesian nonparametric method is able to automatically determine the number of clusters. We demonstrate the utility of the proposed method using simulation studies and applications to a single-cell RNA-sequencing dataset, a combination of single-cell RNA-sequencing and single-cell ATAC-sequencing dataset, a bulk RNA-sequencing dataset, and a DNA methylation dataset which reveal several interesting findings that are consistent with biological literature.

分享
查看原文
基于稀疏矩阵分解的多组学数据双重叠聚类的统一贝叶斯框架
现代测序技术的进步产生了前所未有的多组学数据,为从不同但互补的角度定量探索功能基因组提供了绝佳机会。然而,不同的模式/测序技术会产生不同类型的数据,这使得统计建模变得非常复杂,因为处理每种类型的数据都需要独特的优化方法。在本文中,我们提出了一种统一的贝叶斯非参数矩阵因式分解框架,可推导出多组学数据的重叠双簇。所提出的方法能自适应地将不同类型的观测数据离散为共同的潜在状态,并在此基础上分层构建聚类结构。所提出的贝叶斯非参数方法能够自动确定聚类的数量。我们通过模拟研究和应用于单细胞 RNA 序列数据集、单细胞 RNA 序列和单细胞 ATAC 序列组合数据集、批量 RNA 序列数据集和 DNA 甲基化数据集,证明了所提方法的实用性,并揭示了与生物学文献一致的一些有趣发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信