Coexistence in competing first passage percolation with conversion

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
T. Finn, Alexandre O. Stauffer
{"title":"Coexistence in competing first passage percolation with conversion","authors":"T. Finn, Alexandre O. Stauffer","doi":"10.1214/22-aap1792","DOIUrl":null,"url":null,"abstract":"We introduce a two-type first passage percolation competition model on infinite connected graphs as follows. Type 1 spreads through the edges of the graph at rate 1 from a single distinguished site, while all other sites are initially vacant. Once a site is occupied by type 1, it converts to type 2 at rate $\\rho>0$. Sites occupied by type 2 then spread at rate $\\lambda>0$ through vacant sites \\emph{and} sites occupied by type 1, whereas type 1 can only spread through vacant sites. If the set of sites occupied by type 1 is non-empty at all times, we say type 1 \\emph{survives}. In the case of a regular $d$-ary tree for $d\\geq 3$, we show type 1 can survive when it is slower than type 2, provided $\\rho$ is small enough. This is in contrast to when the underlying graph is $\\mathbb{Z}^d$, where for any $\\rho>0$, type 1 dies out almost surely if $\\lambda>1$.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/22-aap1792","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

We introduce a two-type first passage percolation competition model on infinite connected graphs as follows. Type 1 spreads through the edges of the graph at rate 1 from a single distinguished site, while all other sites are initially vacant. Once a site is occupied by type 1, it converts to type 2 at rate $\rho>0$. Sites occupied by type 2 then spread at rate $\lambda>0$ through vacant sites \emph{and} sites occupied by type 1, whereas type 1 can only spread through vacant sites. If the set of sites occupied by type 1 is non-empty at all times, we say type 1 \emph{survives}. In the case of a regular $d$-ary tree for $d\geq 3$, we show type 1 can survive when it is slower than type 2, provided $\rho$ is small enough. This is in contrast to when the underlying graph is $\mathbb{Z}^d$, where for any $\rho>0$, type 1 dies out almost surely if $\lambda>1$.
竞争第一通道渗流与转换的共存性
我们在无限连通图上引入了一个两类第一通道渗流竞争模型,如下所示。类型1从一个可区分的站点以1的速率分布在图的边缘,而所有其他站点最初都是空的。一旦一个站点被类型1占用,它就会以$\rho>0$的速率转换为类型2。然后,第2类占用的场地以$\lamba>0$的价格分布在第1类占用的空置场地上,而第1类只能分布在空置场地上。如果类型1占用的站点集在任何时候都是非空的,我们称类型1\emph{幸存}。在$d\geq3$的正则$d$ary树的情况下,我们表明,如果$\rho$足够小,当类型1比类型2慢时,它可以生存。这与底层图为$\mathbb{Z}^d$时形成了对比,其中对于任何$\rho>0$,如果$\lambda>1$,类型1几乎肯定会消亡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信