Evidence for an interaction between cannabinoidergic and dopaminergic systems with melanocortin MC3/ MC4 receptors in regulating food intake of neonatal chick
M. Bameri, Morteza Zendedel Kheybari, B. Vazir, A. Asghari, N. Panahi
{"title":"Evidence for an interaction between cannabinoidergic and dopaminergic systems with melanocortin MC3/ MC4 receptors in regulating food intake of neonatal chick","authors":"M. Bameri, Morteza Zendedel Kheybari, B. Vazir, A. Asghari, N. Panahi","doi":"10.22067/IJVST.2021.69380.1028","DOIUrl":null,"url":null,"abstract":"The current study aimed to see how the central dopaminergic and cannabinoidergic mechanisms affect melanocortin-induced food intake in the neonatal layer chickens. In this regard, 9 experiments were designed. In experiment 1, chicks injected with control solution, MTII (2.5, 5, and 10 ng). In experiment 2, control solution, L-DOPA (125 nmol), MTII (10 ng), and L-DOPA + MTII were applied to the birds. Experiments 3-9 were similar to experiment 2, except birds injected with 6-OHDA (150 nmol), SCH23390 (5 nmol), AMI-193 (5 nmol), NGB2904 (6.4 nmol), L-741,742 (6 nmol), SR141716A (6.25 µg), and AM630 (5 µg) instead of L-DOPA. Then, cumulative food intake was recorded at 30, 60, and 120 min following injection. According to the results, in comparison with the control group, dose-dependent hypophagia was observed in 3-h food-deprived neonatal layer chickens following ICV injection of MTII (2.5, 5, and 10 ng) (P 0.05). These results demonstrated that melanocortin-induced hypophagia in the neonatal layer chickens is likely mediated by D1, D2, and CB1 receptors.","PeriodicalId":36826,"journal":{"name":"Iranian Journal of Veterinary Science and Technology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Veterinary Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22067/IJVST.2021.69380.1028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Veterinary","Score":null,"Total":0}
引用次数: 0
Abstract
The current study aimed to see how the central dopaminergic and cannabinoidergic mechanisms affect melanocortin-induced food intake in the neonatal layer chickens. In this regard, 9 experiments were designed. In experiment 1, chicks injected with control solution, MTII (2.5, 5, and 10 ng). In experiment 2, control solution, L-DOPA (125 nmol), MTII (10 ng), and L-DOPA + MTII were applied to the birds. Experiments 3-9 were similar to experiment 2, except birds injected with 6-OHDA (150 nmol), SCH23390 (5 nmol), AMI-193 (5 nmol), NGB2904 (6.4 nmol), L-741,742 (6 nmol), SR141716A (6.25 µg), and AM630 (5 µg) instead of L-DOPA. Then, cumulative food intake was recorded at 30, 60, and 120 min following injection. According to the results, in comparison with the control group, dose-dependent hypophagia was observed in 3-h food-deprived neonatal layer chickens following ICV injection of MTII (2.5, 5, and 10 ng) (P 0.05). These results demonstrated that melanocortin-induced hypophagia in the neonatal layer chickens is likely mediated by D1, D2, and CB1 receptors.