April M. Dobbs, Daniel Ginn, S. Skovsen, M. Bagavathiannan, S. Mirsky, C. Reberg-Horton, R. León
{"title":"New Directions in Weed Management and Research Using 3D Imaging","authors":"April M. Dobbs, Daniel Ginn, S. Skovsen, M. Bagavathiannan, S. Mirsky, C. Reberg-Horton, R. León","doi":"10.1017/wsc.2022.56","DOIUrl":null,"url":null,"abstract":"Abstract Recent innovations in 3D imaging technology have created unprecedented potential for better understanding weed responses to management tactics. Although traditional 2D imaging methods for mapping weed populations can be limited in the field by factors such as shadows and tissue overlap, 3D imaging mitigates these challenges by using depth data to create accurate plant models. Three-dimensional imaging can be used to generate spatiotemporal maps of weed populations in the field and target weeds for site-specific weed management, including automated precision weed control. This technology will also help growers monitor cover crop performance for weed suppression and detect late-season weed escapes for timely control, thereby reducing seedbank persistence and slowing the evolution of herbicide resistance. In addition to its many applications in weed management, 3D imaging offers weed researchers new tools for understanding spatial and temporal heterogeneity in weed responses to integrated weed management tactics, including weed–crop competition and weed community dynamics. This technology will provide simple and low-cost tools for growers and researchers alike to better understand weed responses in diverse agronomic contexts, which will aid in reducing herbicide use, mitigating herbicide-resistance evolution, and improving environmental health.","PeriodicalId":23688,"journal":{"name":"Weed Science","volume":"70 1","pages":"641 - 647"},"PeriodicalIF":2.1000,"publicationDate":"2022-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Weed Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1017/wsc.2022.56","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract Recent innovations in 3D imaging technology have created unprecedented potential for better understanding weed responses to management tactics. Although traditional 2D imaging methods for mapping weed populations can be limited in the field by factors such as shadows and tissue overlap, 3D imaging mitigates these challenges by using depth data to create accurate plant models. Three-dimensional imaging can be used to generate spatiotemporal maps of weed populations in the field and target weeds for site-specific weed management, including automated precision weed control. This technology will also help growers monitor cover crop performance for weed suppression and detect late-season weed escapes for timely control, thereby reducing seedbank persistence and slowing the evolution of herbicide resistance. In addition to its many applications in weed management, 3D imaging offers weed researchers new tools for understanding spatial and temporal heterogeneity in weed responses to integrated weed management tactics, including weed–crop competition and weed community dynamics. This technology will provide simple and low-cost tools for growers and researchers alike to better understand weed responses in diverse agronomic contexts, which will aid in reducing herbicide use, mitigating herbicide-resistance evolution, and improving environmental health.
期刊介绍:
Weed Science publishes original research and scholarship in the form of peer-reviewed articles focused on fundamental research directly related to all aspects of weed science in agricultural systems. Topics for Weed Science include:
- the biology and ecology of weeds in agricultural, forestry, aquatic, turf, recreational, rights-of-way and other settings, genetics of weeds
- herbicide resistance, chemistry, biochemistry, physiology and molecular action of herbicides and plant growth regulators used to manage undesirable vegetation
- ecology of cropping and other agricultural systems as they relate to weed management
- biological and ecological aspects of weed control tools including biological agents, and herbicide resistant crops
- effect of weed management on soil, air and water.