Exchangeable FGM copulas

Pub Date : 2022-05-23 DOI:10.1017/apr.2023.19
Christopher Blier-Wong, Hélène Cossette, É. Marceau
{"title":"Exchangeable FGM copulas","authors":"Christopher Blier-Wong, Hélène Cossette, É. Marceau","doi":"10.1017/apr.2023.19","DOIUrl":null,"url":null,"abstract":"\n Copulas provide a powerful and flexible tool for modeling the dependence structure of random vectors, and they have many applications in finance, insurance, engineering, hydrology, and other fields. One well-known class of copulas in two dimensions is the Farlie–Gumbel–Morgenstern (FGM) copula, since its simple analytic shape enables closed-form solutions to many problems in applied probability. However, the classical definition of the high-dimensional FGM copula does not enable a straightforward understanding of the effect of the copula parameters on the dependence, nor a geometric understanding of their admissible range. We circumvent this issue by analyzing the FGM copula from a probabilistic approach based on multivariate Bernoulli distributions. This paper examines high-dimensional exchangeable FGM copulas, a subclass of FGM copulas. We show that the dependence parameters of exchangeable FGM copulas can be expressed as a convex hull of a finite number of extreme points. We also leverage the probabilistic interpretation to develop efficient sampling and estimating procedures and provide a simulation study. Throughout, we discover geometric interpretations of the copula parameters that assist one in decoding the dependence of high-dimensional exchangeable FGM copulas.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/apr.2023.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Copulas provide a powerful and flexible tool for modeling the dependence structure of random vectors, and they have many applications in finance, insurance, engineering, hydrology, and other fields. One well-known class of copulas in two dimensions is the Farlie–Gumbel–Morgenstern (FGM) copula, since its simple analytic shape enables closed-form solutions to many problems in applied probability. However, the classical definition of the high-dimensional FGM copula does not enable a straightforward understanding of the effect of the copula parameters on the dependence, nor a geometric understanding of their admissible range. We circumvent this issue by analyzing the FGM copula from a probabilistic approach based on multivariate Bernoulli distributions. This paper examines high-dimensional exchangeable FGM copulas, a subclass of FGM copulas. We show that the dependence parameters of exchangeable FGM copulas can be expressed as a convex hull of a finite number of extreme points. We also leverage the probabilistic interpretation to develop efficient sampling and estimating procedures and provide a simulation study. Throughout, we discover geometric interpretations of the copula parameters that assist one in decoding the dependence of high-dimensional exchangeable FGM copulas.
分享
查看原文
可交换的FGM交配
Copulas为随机向量的依赖结构建模提供了一个强大而灵活的工具,在金融、保险、工程、水文等领域有许多应用。一类著名的二维copula是Farlie–Gumbel–Morgenstern(FGM)copula,因为它的简单分析形状能够在应用概率中实现许多问题的闭合形式解。然而,高维FGM-copula的经典定义无法直接理解copula参数对相关性的影响,也无法从几何角度理解其容许范围。我们通过从基于多元伯努利分布的概率方法分析FGM copula来规避这个问题。本文研究了FGM交配子类的一个高维可交换FGM交配。我们证明了可交换FGM Copula的依赖参数可以表示为有限个极值点的凸包。我们还利用概率解释来开发有效的采样和估计程序,并提供模拟研究。在整个过程中,我们发现了copula参数的几何解释,这些解释有助于解码高维可交换FGM copula的依赖性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信