Gas phase chemoselective hydrogenation of p-nitrobenzonitrile over gold: effect of metal particle size, support and the metal-support interface

Q1 Materials Science
Y. Hao, F. Cárdenas-Lizana, M. Keane
{"title":"Gas phase chemoselective hydrogenation of p-nitrobenzonitrile over gold: effect of metal particle size, support and the metal-support interface","authors":"Y. Hao, F. Cárdenas-Lizana, M. Keane","doi":"10.1080/2055074X.2017.1414345","DOIUrl":null,"url":null,"abstract":"Abstract We report the catalytic gas phase hydrogenation of p-nitrobenzonitrile (p-NBN) to p-aminobenzonitrile (p-ABN) over a series of oxide (CeO2, Fe2O3, Fe3O4, TiO2, ZrO2 and Al2O3) supported (1 mol%) Au catalysts (mean size 3–8 nm from electron microscopy). Hydrogenation rate was structure sensitive with lower turnover frequencies (TOF) over larger Au nanoparticles in the 4–8 nm interval and a decrease in TOF for Au ≤ 3 nm. This size dependence also applies to H2 chemisorption under reaction conditions. Rate normalised with respect to H2 uptake showed a dependence on support redox potential where the formation of oxygen vacancies (from O2 titration) served to stabilise the −NO2 group, lowering reactivity. Reaction over Au/TiO2 with modified electronic character (from XPS) deviated from this trend and delivered the highest specific hydrogenation rate, which is attributed to –NO2 activation at the Au-TiO2 interface; this effect extends to TiO2 supported Ag and Pd.","PeriodicalId":43717,"journal":{"name":"Catalysis Structure & Reactivity","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/2055074X.2017.1414345","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Structure & Reactivity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/2055074X.2017.1414345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract We report the catalytic gas phase hydrogenation of p-nitrobenzonitrile (p-NBN) to p-aminobenzonitrile (p-ABN) over a series of oxide (CeO2, Fe2O3, Fe3O4, TiO2, ZrO2 and Al2O3) supported (1 mol%) Au catalysts (mean size 3–8 nm from electron microscopy). Hydrogenation rate was structure sensitive with lower turnover frequencies (TOF) over larger Au nanoparticles in the 4–8 nm interval and a decrease in TOF for Au ≤ 3 nm. This size dependence also applies to H2 chemisorption under reaction conditions. Rate normalised with respect to H2 uptake showed a dependence on support redox potential where the formation of oxygen vacancies (from O2 titration) served to stabilise the −NO2 group, lowering reactivity. Reaction over Au/TiO2 with modified electronic character (from XPS) deviated from this trend and delivered the highest specific hydrogenation rate, which is attributed to –NO2 activation at the Au-TiO2 interface; this effect extends to TiO2 supported Ag and Pd.
金上对硝基苯甲腈气相化学选择性加氢反应:金属颗粒大小、载体和金属-载体界面的影响
摘要我们报道了在一系列氧化物(CeO2、Fe2O3、Fe3O4、TiO2、ZrO2和Al2O3)负载(1 mol%)的Au催化剂(电子显微镜平均尺寸为3–8 nm)上,对硝基苯甲腈(p-NBN)催化气相氢化为对氨基苯甲腈(p-ABN)。加氢速率对结构敏感,在4–8 nm的间隔内,较大的Au纳米颗粒的TOF较低,Au≤3 nm的TOF降低。这种尺寸依赖性也适用于反应条件下的H2化学吸附。相对于H2吸收的速率归一化显示出对载体氧化还原电位的依赖性,其中氧空位的形成(来自O2滴定)有助于稳定−NO2基团,降低反应性。具有改性电子性质的Au/TiO2上的反应(来自XPS)偏离了这一趋势,并提供了最高的比氢化速率,这归因于Au-TiO2界面处的-NO2活化;这种效应延伸到TiO2负载的Ag和Pd。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Catalysis Structure & Reactivity
Catalysis Structure & Reactivity CHEMISTRY, PHYSICAL-
CiteScore
4.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信