Investigating the Simulation Rate of an Axially Symmetric Rarefied Gas Flow Using v-DSMC

IF 0.7 4区 工程技术 Q3 MATHEMATICS, APPLIED
Siavash Maniee, Seyed Salman Noorazar
{"title":"Investigating the Simulation Rate of an Axially Symmetric Rarefied Gas Flow Using v-DSMC","authors":"Siavash Maniee, Seyed Salman Noorazar","doi":"10.1080/23324309.2020.1770796","DOIUrl":null,"url":null,"abstract":"Abstract This article reports a comparative study of the convergence rate of an axially symmetric binary gas flow inside a rotating cylinder using an improved direct simulation Monte Carlo algorithm for rarefied gases (v-DSMC) and the conventional DSMC. Subsequently, a comparison between the convergence behavior of the v-DSMC and analytical data is carried out to scrutinize the validity of the v-DSMC algorithm. This method makes use of a modified collision model of variable hard sphere (VHS) termed Maxwell-VHS, which considers an equal contingency of collision but an arbitrary viscosity variation with temperature, for all adjacent gas particles. The results of the numerical simulation declare the convergence rate of the v-DSMC is noticeably faster than those performed by the conventional DSMC; however, a slight computational error occurs at the same simulation time due to higher accuracy of collision sampling in the conventional DSMC. Moreover, the results show a good agreement between the convergence behaviors of the v-DSMC in comparison with the analytical data.","PeriodicalId":54305,"journal":{"name":"Journal of Computational and Theoretical Transport","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2020-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/23324309.2020.1770796","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Theoretical Transport","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/23324309.2020.1770796","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract This article reports a comparative study of the convergence rate of an axially symmetric binary gas flow inside a rotating cylinder using an improved direct simulation Monte Carlo algorithm for rarefied gases (v-DSMC) and the conventional DSMC. Subsequently, a comparison between the convergence behavior of the v-DSMC and analytical data is carried out to scrutinize the validity of the v-DSMC algorithm. This method makes use of a modified collision model of variable hard sphere (VHS) termed Maxwell-VHS, which considers an equal contingency of collision but an arbitrary viscosity variation with temperature, for all adjacent gas particles. The results of the numerical simulation declare the convergence rate of the v-DSMC is noticeably faster than those performed by the conventional DSMC; however, a slight computational error occurs at the same simulation time due to higher accuracy of collision sampling in the conventional DSMC. Moreover, the results show a good agreement between the convergence behaviors of the v-DSMC in comparison with the analytical data.
用v-DSMC研究轴对称稀薄气流的模拟速率
摘要本文使用改进的稀薄气体直接模拟蒙特卡罗算法(v-DSMC)和传统的DSMC对旋转圆筒内轴对称二元气体流的收敛速度进行了比较研究。随后,将v-DSMC的收敛行为与分析数据进行了比较,以检验v-DSMC算法的有效性。该方法使用了一种称为Maxwell VHS的可变硬球(VHS)的改进碰撞模型,该模型考虑了所有相邻气体颗粒的碰撞偶然性相等,但粘度随温度的任意变化。数值模拟结果表明,v-DSMC的收敛速度明显快于传统的DSMC;然而,由于传统DSMC中碰撞采样的精度较高,在相同的模拟时间会出现轻微的计算误差。此外,与分析数据相比,结果表明v-DSMC的收敛行为之间有很好的一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Computational and Theoretical Transport
Journal of Computational and Theoretical Transport Mathematics-Mathematical Physics
CiteScore
1.30
自引率
0.00%
发文量
15
期刊介绍: Emphasizing computational methods and theoretical studies, this unique journal invites articles on neutral-particle transport, kinetic theory, radiative transfer, charged-particle transport, and macroscopic transport phenomena. In addition, the journal encourages articles on uncertainty quantification related to these fields. Offering a range of information and research methodologies unavailable elsewhere, Journal of Computational and Theoretical Transport brings together closely related mathematical concepts and techniques to encourage a productive, interdisciplinary exchange of ideas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信