{"title":"Semilinear hyperbolic inequalities with Hardy potential in a bounded domain","authors":"M. Jleli, B. Samet","doi":"10.3233/asy-231854","DOIUrl":null,"url":null,"abstract":"We consider hyperbolic inequalities with Hardy potential u t t − Δ u + λ | x | 2 u ⩾ | x | − a | u | p in ( 0 , ∞ ) × B 1 ∖ { 0 } , u ( t , x ) ⩾ f ( x ) on ( 0 , ∞ ) × ∂ B 1 , where B 1 is the unit ball in R N , N ⩾ 3, λ > − ( N − 2 2 ) 2 , a ⩾ 0, p > 1 and f is a nontrivial L 1 -function. We study separately the cases: λ = 0, − ( N − 2 2 ) 2 < λ < 0 and λ > 0. For each case, we obtain an optimal criterium for the nonexistence of weak solutions. Our study yields naturally optimal nonexistence results for the corresponding stationary problem. The novelty of this work lies in two facts: (i) To the best of our knowledge, in all previous works dealing with nonexistence results for evolution equations with Hardy potential in a bounded domain, only the parabolic case has been investigated, making use of some comparison principles. (ii) To the best of our knowledge, in all previous works, the issue of nonexistence has been studied only in the case of positive solutions. In this paper, there is no restriction on the sign of solutions.","PeriodicalId":55438,"journal":{"name":"Asymptotic Analysis","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asymptotic Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3233/asy-231854","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We consider hyperbolic inequalities with Hardy potential u t t − Δ u + λ | x | 2 u ⩾ | x | − a | u | p in ( 0 , ∞ ) × B 1 ∖ { 0 } , u ( t , x ) ⩾ f ( x ) on ( 0 , ∞ ) × ∂ B 1 , where B 1 is the unit ball in R N , N ⩾ 3, λ > − ( N − 2 2 ) 2 , a ⩾ 0, p > 1 and f is a nontrivial L 1 -function. We study separately the cases: λ = 0, − ( N − 2 2 ) 2 < λ < 0 and λ > 0. For each case, we obtain an optimal criterium for the nonexistence of weak solutions. Our study yields naturally optimal nonexistence results for the corresponding stationary problem. The novelty of this work lies in two facts: (i) To the best of our knowledge, in all previous works dealing with nonexistence results for evolution equations with Hardy potential in a bounded domain, only the parabolic case has been investigated, making use of some comparison principles. (ii) To the best of our knowledge, in all previous works, the issue of nonexistence has been studied only in the case of positive solutions. In this paper, there is no restriction on the sign of solutions.
期刊介绍:
The journal Asymptotic Analysis fulfills a twofold function. It aims at publishing original mathematical results in the asymptotic theory of problems affected by the presence of small or large parameters on the one hand, and at giving specific indications of their possible applications to different fields of natural sciences on the other hand. Asymptotic Analysis thus provides mathematicians with a concentrated source of newly acquired information which they may need in the analysis of asymptotic problems.