Comparing climate time series – Part 4: Annual cycles

Q1 Mathematics
T. DelSole, M. Tippett
{"title":"Comparing climate time series – Part 4: Annual cycles","authors":"T. DelSole, M. Tippett","doi":"10.5194/ascmo-8-187-2022","DOIUrl":null,"url":null,"abstract":"Abstract. This paper derives a test for deciding whether two time series come from the same stochastic model, where the time series contains periodic and serially correlated components. This test is useful for comparing dynamical model simulations to observations. The framework for deriving this test is the same as in the previous three parts: the time series are first fit to separate autoregressive models, and then the hypothesis that their parameters are equal is tested. This paper generalizes the previous tests to a limited class of nonstationary processes, namely, those represented by an autoregressive model with deterministic forcing terms. The statistic for testing differences in parameters can be decomposed into independent terms that quantify differences in noise variance, differences in autoregression parameters, and differences in forcing parameters (e.g., differences in annual cycle forcing). A hierarchical procedure for testing individual terms and quantifying the overall significance level is derived from standard methods. The test is applied to compare observations of the meridional overturning circulation from the RAPID array to Coupled Model Intercomparison Project Phase 5 (CMIP5) models. Most CMIP5 models are inconsistent with observations, with the strongest differences arising from having too little noise variance, though differences in annual cycle forcing also contribute significantly to discrepancies from observations. This appears to be the first use of a rigorous criterion to decide “equality of annual cycles” in regards to all their attributes (e.g., phases, amplitudes, frequencies) while accounting for serial correlations.\n","PeriodicalId":36792,"journal":{"name":"Advances in Statistical Climatology, Meteorology and Oceanography","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Statistical Climatology, Meteorology and Oceanography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/ascmo-8-187-2022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract. This paper derives a test for deciding whether two time series come from the same stochastic model, where the time series contains periodic and serially correlated components. This test is useful for comparing dynamical model simulations to observations. The framework for deriving this test is the same as in the previous three parts: the time series are first fit to separate autoregressive models, and then the hypothesis that their parameters are equal is tested. This paper generalizes the previous tests to a limited class of nonstationary processes, namely, those represented by an autoregressive model with deterministic forcing terms. The statistic for testing differences in parameters can be decomposed into independent terms that quantify differences in noise variance, differences in autoregression parameters, and differences in forcing parameters (e.g., differences in annual cycle forcing). A hierarchical procedure for testing individual terms and quantifying the overall significance level is derived from standard methods. The test is applied to compare observations of the meridional overturning circulation from the RAPID array to Coupled Model Intercomparison Project Phase 5 (CMIP5) models. Most CMIP5 models are inconsistent with observations, with the strongest differences arising from having too little noise variance, though differences in annual cycle forcing also contribute significantly to discrepancies from observations. This appears to be the first use of a rigorous criterion to decide “equality of annual cycles” in regards to all their attributes (e.g., phases, amplitudes, frequencies) while accounting for serial correlations.
气候时间序列的比较——第4部分:年周期
摘要本文推导了判定两个时间序列是否来自同一随机模型的检验,其中时间序列包含周期分量和序列相关分量。该测试有助于将动力学模型模拟与观测结果进行比较。推导该检验的框架与前三部分相同:首先将时间序列拟合为独立的自回归模型,然后检验其参数相等的假设。本文将先前的测试推广到一类有限的非平稳过程,即由具有确定性强迫项的自回归模型表示的非平稳进程。用于测试参数差异的统计数据可以分解为独立项,这些独立项量化噪声方差的差异、自回归参数的差异和强迫参数的差异(例如,年度周期强迫的差异)。测试单个术语和量化总体显著性水平的分级程序源自标准方法。该测试用于比较RAPID阵列与耦合模型相互比较项目第5阶段(CMIP5)模型的经向翻转环流观测结果。大多数CMIP5模型与观测结果不一致,最大的差异是由于噪声方差太小,尽管年周期强迫的差异也会显著导致观测结果的差异。这似乎是第一次使用严格的标准来决定“年周期的相等性”,涉及其所有属性(如相位、振幅、频率),同时考虑序列相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Statistical Climatology, Meteorology and Oceanography
Advances in Statistical Climatology, Meteorology and Oceanography Earth and Planetary Sciences-Atmospheric Science
CiteScore
4.80
自引率
0.00%
发文量
9
审稿时长
26 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信