A. M. Shafaroudi, Bahareh Boroziniat, Mohammad Reza Hidarian Shahri
{"title":"Integration of geological and geophysical studies in order to mineral exploration at the Zaveh mineralization area, Khorasan Razavi Province, Iran","authors":"A. M. Shafaroudi, Bahareh Boroziniat, Mohammad Reza Hidarian Shahri","doi":"10.30495/IJES.2021.685384","DOIUrl":null,"url":null,"abstract":"The copper deposit of Zaveh lies in the SE of the city of Torbat-e-Heydarieh and in middle of the Khaf-Kashmar-Bardaskan Magmatic Belt (KKBMB) in the Khorasan-e-Razavi Province. The lithology of the area consist of Jurassic and Cretaceous sedimentary rocks and Eocene volcanic units. Ore-formation is controlled by fault activity, representing vein-veinlet style E-W trending, formed within a conglomerate rich in quartz. Primary minerals are chalcopyrite, pyrite and arsenopyrite and secondary minerals contain malachite, azurite chalcocite, bornite, covellite, Cu sulphates, wad (Mn hydroxide), haematite, goethite, jarosite, limonite and (to a lesser extent) chrysocolla. The predominant alteration is silification which is associated with vein ore-formation. The volcanic units host propylitic, sericite, carbonate and silicification alterations. The ore-formation itself represents anomalies of Cu (2.1 % max), As (>1%), Sb (~105 gr/T), Pb (4371 gr/T) and Zn (1.1% max). Induced polarization and electrical resistivity (IP/RS) surveys unveil that the most chargeability anomaly corresponds to center of ore-forming vein and fault zone.The chargeability anomaly extends and amplifies with depth. The most amount of specific electrical resistance has been observed in the quartz-rich conglomerate. Interpretation of IP/RS data reveals that the chargeable source is extending in deeper beds (presumably sulphid ore-formation) which needs to be verified by boring operation. Geophysical surveys are significantly commensurate with field observations, ore-forming and geochemical data. Utilization Geophysical methods in different style of ore-deposits and interpretation of obtained information by means of geological, ore-forming and geochemistry data is considered to be a big step towards subterranean exploration and deposits modeling.","PeriodicalId":44351,"journal":{"name":"Iranian Journal of Earth Sciences","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2021-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Earth Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30495/IJES.2021.685384","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The copper deposit of Zaveh lies in the SE of the city of Torbat-e-Heydarieh and in middle of the Khaf-Kashmar-Bardaskan Magmatic Belt (KKBMB) in the Khorasan-e-Razavi Province. The lithology of the area consist of Jurassic and Cretaceous sedimentary rocks and Eocene volcanic units. Ore-formation is controlled by fault activity, representing vein-veinlet style E-W trending, formed within a conglomerate rich in quartz. Primary minerals are chalcopyrite, pyrite and arsenopyrite and secondary minerals contain malachite, azurite chalcocite, bornite, covellite, Cu sulphates, wad (Mn hydroxide), haematite, goethite, jarosite, limonite and (to a lesser extent) chrysocolla. The predominant alteration is silification which is associated with vein ore-formation. The volcanic units host propylitic, sericite, carbonate and silicification alterations. The ore-formation itself represents anomalies of Cu (2.1 % max), As (>1%), Sb (~105 gr/T), Pb (4371 gr/T) and Zn (1.1% max). Induced polarization and electrical resistivity (IP/RS) surveys unveil that the most chargeability anomaly corresponds to center of ore-forming vein and fault zone.The chargeability anomaly extends and amplifies with depth. The most amount of specific electrical resistance has been observed in the quartz-rich conglomerate. Interpretation of IP/RS data reveals that the chargeable source is extending in deeper beds (presumably sulphid ore-formation) which needs to be verified by boring operation. Geophysical surveys are significantly commensurate with field observations, ore-forming and geochemical data. Utilization Geophysical methods in different style of ore-deposits and interpretation of obtained information by means of geological, ore-forming and geochemistry data is considered to be a big step towards subterranean exploration and deposits modeling.