{"title":"An analysis of the buoyancy and drag parameters in Rayleigh-Taylor dynamics","authors":"D. Hill, S. Abarzhi","doi":"10.1051/mmnp/2023027","DOIUrl":null,"url":null,"abstract":"Rayleigh-Taylor instability (RTI) is of critical important in a broad range of natural and industrial processes and is an intellectual challenge for theoretical studies. In this work, we analyze the scale-dependent linear and nonlinear Rayleigh-Taylor (RT) dynamics within the group theory approach. We link the governing equations, through an associated dynamical system based on space groups, to a momentum model based on scaling transformations. In doing so, we precisely derive expressions for the buoyancy and drag parameters of the momentum model, exactly integrate the model equations and determine solutions for bubbles and for spikes in both early-time and late-time regimes. In particular, we focus on the general situation in which the instability is driven by an acceleration having power-law time dependence. Our analysis provides extensive benchmarks for future research.","PeriodicalId":18285,"journal":{"name":"Mathematical Modelling of Natural Phenomena","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Modelling of Natural Phenomena","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1051/mmnp/2023027","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Rayleigh-Taylor instability (RTI) is of critical important in a broad range of natural and industrial processes and is an intellectual challenge for theoretical studies. In this work, we analyze the scale-dependent linear and nonlinear Rayleigh-Taylor (RT) dynamics within the group theory approach. We link the governing equations, through an associated dynamical system based on space groups, to a momentum model based on scaling transformations. In doing so, we precisely derive expressions for the buoyancy and drag parameters of the momentum model, exactly integrate the model equations and determine solutions for bubbles and for spikes in both early-time and late-time regimes. In particular, we focus on the general situation in which the instability is driven by an acceleration having power-law time dependence. Our analysis provides extensive benchmarks for future research.
期刊介绍:
The Mathematical Modelling of Natural Phenomena (MMNP) is an international research journal, which publishes top-level original and review papers, short communications and proceedings on mathematical modelling in biology, medicine, chemistry, physics, and other areas. The scope of the journal is devoted to mathematical modelling with sufficiently advanced model, and the works studying mainly the existence and stability of stationary points of ODE systems are not considered. The scope of the journal also includes applied mathematics and mathematical analysis in the context of its applications to the real world problems. The journal is essentially functioning on the basis of topical issues representing active areas of research. Each topical issue has its own editorial board. The authors are invited to submit papers to the announced issues or to suggest new issues.
Journal publishes research articles and reviews within the whole field of mathematical modelling, and it will continue to provide information on the latest trends and developments in this ever-expanding subject.