Panel kink threshold regression model with a covariate-dependent threshold

IF 2.9 4区 经济学 Q1 ECONOMICS
Lixiong Yang, Chunli Zhang, Chingnun Lee, I‐Po Chen
{"title":"Panel kink threshold regression model with a covariate-dependent threshold","authors":"Lixiong Yang, Chunli Zhang, Chingnun Lee, I‐Po Chen","doi":"10.1093/ectj/utaa035","DOIUrl":null,"url":null,"abstract":"\n This article extends the kink threshold regression model with a constant threshold to a panel data framework with a covariate-dependent threshold, where the threshold is modeled as a function of informative covariates. We suggest an estimator based on the within-group transformation and propose test statistics for kink threshold effect and threshold constancy. We establish the asymptotic joint normality of the slope and threshold estimators and derive the limiting distributions of the test statistics. Our asymptotic results show that the inclusion of a covariate-dependent threshold does not affect the asymptotic joint normality of the slope and threshold estimates in the kink threshold regression model. Monte Carlo simulations show that the finite-sample proprieties of the proposed estimator and test statistics are generally satisfactory.","PeriodicalId":50555,"journal":{"name":"Econometrics Journal","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2020-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics Journal","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1093/ectj/utaa035","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 6

Abstract

This article extends the kink threshold regression model with a constant threshold to a panel data framework with a covariate-dependent threshold, where the threshold is modeled as a function of informative covariates. We suggest an estimator based on the within-group transformation and propose test statistics for kink threshold effect and threshold constancy. We establish the asymptotic joint normality of the slope and threshold estimators and derive the limiting distributions of the test statistics. Our asymptotic results show that the inclusion of a covariate-dependent threshold does not affect the asymptotic joint normality of the slope and threshold estimates in the kink threshold regression model. Monte Carlo simulations show that the finite-sample proprieties of the proposed estimator and test statistics are generally satisfactory.
具有协变量相关阈值的面板扭结阈值回归模型
本文将具有恒定阈值的扭结阈值回归模型扩展到具有协变量相关阈值的面板数据框架,其中阈值被建模为信息协变量的函数。我们提出了一个基于群内变换的估计器,并提出了扭结阈值效应和阈值恒定性的检验统计量。我们建立了斜率和阈值估计量的渐近联合正态性,并导出了检验统计量的极限分布。我们的渐近结果表明,包含协变相关阈值不会影响扭结阈值回归模型中斜率和阈值估计的渐近联合正态性。蒙特卡罗模拟表明,所提出的估计器的有限样本性质和检验统计量总体上是令人满意的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Econometrics Journal
Econometrics Journal 管理科学-数学跨学科应用
CiteScore
4.20
自引率
5.30%
发文量
25
审稿时长
>12 weeks
期刊介绍: The Econometrics Journal was established in 1998 by the Royal Economic Society with the aim of creating a top international field journal for the publication of econometric research with a standard of intellectual rigour and academic standing similar to those of the pre-existing top field journals in econometrics. The Econometrics Journal is committed to publishing first-class papers in macro-, micro- and financial econometrics. It is a general journal for econometric research open to all areas of econometrics, whether applied, computational, methodological or theoretical contributions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信