Design of Normal distribution-based algorithm for solving systems of nonlinear equations

IF 1.1 Q2 MATHEMATICS, APPLIED
Amir Khakbaz
{"title":"Design of Normal distribution-based algorithm for solving systems of nonlinear equations","authors":"Amir Khakbaz","doi":"10.22034/CMDE.2020.37474.1658","DOIUrl":null,"url":null,"abstract":"In this paper, a completely new statistical based approach is developed for solving the system of nonlinear equations. The developed approach utilizes the characteristics of the normal distribution to search the solution space. The normal distribution is generally introduced by two parameters, i.e., mean and standard deviation. In the developed algorithm, large values of standard deviation enable the algorithm to escape from a local optimum, and small values of standard deviation help the algorithm to find the global optimum. In the following, six benchmark tests and thirteen benchmark case problems are investigated to evaluate the performance of the Normal Distribution-based Algorithm (NDA). The obtained statistical results of NDA are compared with those of PSO, ICA, CS, and ACO. Based on the obtained results, NDA is the least time-consuming algorithm that gets high-quality solutions. Furthermore, few input parameters and simple structure introduce NDA as a user friendly and easy-to-understand algorithm.","PeriodicalId":44352,"journal":{"name":"Computational Methods for Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2021-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods for Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22034/CMDE.2020.37474.1658","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a completely new statistical based approach is developed for solving the system of nonlinear equations. The developed approach utilizes the characteristics of the normal distribution to search the solution space. The normal distribution is generally introduced by two parameters, i.e., mean and standard deviation. In the developed algorithm, large values of standard deviation enable the algorithm to escape from a local optimum, and small values of standard deviation help the algorithm to find the global optimum. In the following, six benchmark tests and thirteen benchmark case problems are investigated to evaluate the performance of the Normal Distribution-based Algorithm (NDA). The obtained statistical results of NDA are compared with those of PSO, ICA, CS, and ACO. Based on the obtained results, NDA is the least time-consuming algorithm that gets high-quality solutions. Furthermore, few input parameters and simple structure introduce NDA as a user friendly and easy-to-understand algorithm.
基于正态分布的非线性方程组求解算法设计
本文提出了一种求解非线性方程组的全新的基于统计的方法。所开发的方法利用正态分布的特性来搜索解空间。正态分布通常由两个参数引入,即平均值和标准差。在所开发的算法中,大的标准偏差值使算法能够脱离局部最优,而小的标准偏差有助于算法找到全局最优。在下文中,研究了六个基准测试和十三个基准案例问题,以评估基于正态分布的算法(NDA)的性能。将NDA的统计结果与PSO、ICA、CS和ACO的统计结果进行了比较。根据所获得的结果,NDA是获得高质量解决方案的耗时最少的算法。此外,由于输入参数少、结构简单,NDA成为一种用户友好、易于理解的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
27.30%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信