M. Haendel, J. McMurry, R. Relevo, C. Mungall, P. Robinson, C. Chute
{"title":"A Census of Disease Ontologies","authors":"M. Haendel, J. McMurry, R. Relevo, C. Mungall, P. Robinson, C. Chute","doi":"10.1146/ANNUREV-BIODATASCI-080917-013459","DOIUrl":null,"url":null,"abstract":"For centuries, humans have sought to classify diseases based on phenotypic presentation and available treatments. Today, a wide landscape of strategies, resources, and tools exist to classify patients and diseases. Ontologies can provide a robust foundation of logic for precise stratification and classification along diverse axes such as etiology, development, treatment, and genetics. Disease and phenotype ontologies are used in four primary ways: ( a) search, retrieval, and annotation of knowledge; ( b) data integration and analysis; ( c) clinical decision support; and ( d) knowledge discovery. Computational inference can connect existing knowledge and generate new insights and hypotheses about drug targets, prognosis prediction, or diagnosis. In this review, we examine the rise of disease and phenotype ontologies and the diverse ways they are represented and applied in biomedicine.","PeriodicalId":29775,"journal":{"name":"Annual Review of Biomedical Data Science","volume":" ","pages":""},"PeriodicalIF":7.0000,"publicationDate":"2018-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/ANNUREV-BIODATASCI-080917-013459","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Biomedical Data Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1146/ANNUREV-BIODATASCI-080917-013459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 35
Abstract
For centuries, humans have sought to classify diseases based on phenotypic presentation and available treatments. Today, a wide landscape of strategies, resources, and tools exist to classify patients and diseases. Ontologies can provide a robust foundation of logic for precise stratification and classification along diverse axes such as etiology, development, treatment, and genetics. Disease and phenotype ontologies are used in four primary ways: ( a) search, retrieval, and annotation of knowledge; ( b) data integration and analysis; ( c) clinical decision support; and ( d) knowledge discovery. Computational inference can connect existing knowledge and generate new insights and hypotheses about drug targets, prognosis prediction, or diagnosis. In this review, we examine the rise of disease and phenotype ontologies and the diverse ways they are represented and applied in biomedicine.
期刊介绍:
The Annual Review of Biomedical Data Science provides comprehensive expert reviews in biomedical data science, focusing on advanced methods to store, retrieve, analyze, and organize biomedical data and knowledge. The scope of the journal encompasses informatics, computational, artificial intelligence (AI), and statistical approaches to biomedical data, including the sub-fields of bioinformatics, computational biology, biomedical informatics, clinical and clinical research informatics, biostatistics, and imaging informatics. The mission of the journal is to identify both emerging and established areas of biomedical data science, and the leaders in these fields.