{"title":"Latent Complete-Lattice Structure of Hilbert-Space Projectors","authors":"F. Herbut","doi":"10.12743/QUANTA.V8I1.85","DOIUrl":null,"url":null,"abstract":"To uncover the hidden complete-lattice structure of Hilbert-space projectors, which is not seen by the operator operations and relations (algebraically), resort is taken to the ranges of projectors (to subspaces—to geometry). Taking the range of a projector is completed into a bijection of all projectors onto all subspaces of any finite or countably infinite dimensional Hilbert space. As a second step, this basic bijection is upgraded into an isomorphism of partially ordered sets utilizing the sub-projector relation on the one hand, and the subspace relation on the other. As a third and final step, the basic bijection is further upgraded to isomorphism of complete lattices. The complete-lattice structure is derived for subspaces, then, using the basic bijection, it is transferred to the set of all projectors. Some consequences in the quantum-mechanical formalism are examined with particular attention to the infinite sums appearing in spectral decompositions of discrete self-adjoint operators with infinite spectra.Quanta 2019; 8: 1–10.","PeriodicalId":37613,"journal":{"name":"Quanta","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quanta","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12743/QUANTA.V8I1.85","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 0
Abstract
To uncover the hidden complete-lattice structure of Hilbert-space projectors, which is not seen by the operator operations and relations (algebraically), resort is taken to the ranges of projectors (to subspaces—to geometry). Taking the range of a projector is completed into a bijection of all projectors onto all subspaces of any finite or countably infinite dimensional Hilbert space. As a second step, this basic bijection is upgraded into an isomorphism of partially ordered sets utilizing the sub-projector relation on the one hand, and the subspace relation on the other. As a third and final step, the basic bijection is further upgraded to isomorphism of complete lattices. The complete-lattice structure is derived for subspaces, then, using the basic bijection, it is transferred to the set of all projectors. Some consequences in the quantum-mechanical formalism are examined with particular attention to the infinite sums appearing in spectral decompositions of discrete self-adjoint operators with infinite spectra.Quanta 2019; 8: 1–10.
QuantaArts and Humanities-History and Philosophy of Science
CiteScore
1.30
自引率
0.00%
发文量
5
审稿时长
12 weeks
期刊介绍:
Quanta is an open access academic journal publishing original research and review articles on foundations of quantum mechanics, mathematical physics and philosophy of science.