R. Davarnejad, J. Azizi, Amir Joodaki, Sepideh Mansoori
{"title":"Optimization of electro-Fenton oxidation of carbonated soft drink industry wastewater using response surface methodology","authors":"R. Davarnejad, J. Azizi, Amir Joodaki, Sepideh Mansoori","doi":"10.20450/mjcce.2020.2101","DOIUrl":null,"url":null,"abstract":"The immense volume of highly polluted organic wastewater continuously generated in the beverage industry urges the design of new types of wastewater treatment plants. This study aimed to evaluate the applicability of the electro-Fenton (EF) technique to reduce organic pollution of real effluent from a carbonated soft drink factory. The impact of various process variables like pH, time, current density, H 2 O 2 /Fe 2+ molar ratio, and the volume ratio of H 2 O 2 /soft drink wastewater (SDW) was analyzed using response surface methodology (RSM). The observed responses were in good agreement with predicted values obtained through optimization. The optimum conditions showed a chemical oxygen demand (COD) removal efficiency of 73.07 %, pH of 4.14, time of 41.55 min, current density of 46.12 mA/cm 2 , H 2 O 2 /Fe 2+ molar ratio of 0.9802, and H 2 O 2 /SDW volume fraction of 2.74 ml/l. The EF process was able to effectively diminish the organic pollution, reduce the residence time and, therefore, the operating costs.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.20450/mjcce.2020.2101","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2
Abstract
The immense volume of highly polluted organic wastewater continuously generated in the beverage industry urges the design of new types of wastewater treatment plants. This study aimed to evaluate the applicability of the electro-Fenton (EF) technique to reduce organic pollution of real effluent from a carbonated soft drink factory. The impact of various process variables like pH, time, current density, H 2 O 2 /Fe 2+ molar ratio, and the volume ratio of H 2 O 2 /soft drink wastewater (SDW) was analyzed using response surface methodology (RSM). The observed responses were in good agreement with predicted values obtained through optimization. The optimum conditions showed a chemical oxygen demand (COD) removal efficiency of 73.07 %, pH of 4.14, time of 41.55 min, current density of 46.12 mA/cm 2 , H 2 O 2 /Fe 2+ molar ratio of 0.9802, and H 2 O 2 /SDW volume fraction of 2.74 ml/l. The EF process was able to effectively diminish the organic pollution, reduce the residence time and, therefore, the operating costs.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.