K. Naseem, M. Tahir, Fatima Farooqi, Suryyia Manzoor, S. Khan
{"title":"Strategies adopted for the preparation of sodium alginate–based nanocomposites and their role as catalytic, antibacterial, and antifungal agents","authors":"K. Naseem, M. Tahir, Fatima Farooqi, Suryyia Manzoor, S. Khan","doi":"10.1515/revce-2022-0016","DOIUrl":null,"url":null,"abstract":"Abstract Alginate extracted from the marine brown algae is a massively utilized biopolymer in multiple fields such as microreactors for the fabrication of metal nanoparticles along with other polymeric and nonpolymeric materials to enhance their mechanical strength. These sodium alginate (Na-Alg)-based fabricated nanocomposites find applications in the field of catalysis and biological treatment as antibacterial/antifungal agent due to the synergistic properties of Na-Alg and fabricated metal nanoparticles (NPs). Na-Alg offers mechanical strength and nanoparticles provide high reactivity due to their small size. Sodium alginate exhibits hydroxyl and carboxylate functional groups that can easily interact with the metal nanoparticles to form composite particles. The research on the preparation of Na-Alg–based nanoparticles and nanoaggregates have been started recently but developed quickly due to their extensive applications in different fields. This review article encircles different methods of preparation of sodium alginate–based metal nanocomposites; analytical techniques reported to monitor the formation of these nanocomposites and used to characterize these nanocomposites as well as applications of these nanocomposites as catalyst, antibacterial, and antifungal agent.","PeriodicalId":54485,"journal":{"name":"Reviews in Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/revce-2022-0016","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract Alginate extracted from the marine brown algae is a massively utilized biopolymer in multiple fields such as microreactors for the fabrication of metal nanoparticles along with other polymeric and nonpolymeric materials to enhance their mechanical strength. These sodium alginate (Na-Alg)-based fabricated nanocomposites find applications in the field of catalysis and biological treatment as antibacterial/antifungal agent due to the synergistic properties of Na-Alg and fabricated metal nanoparticles (NPs). Na-Alg offers mechanical strength and nanoparticles provide high reactivity due to their small size. Sodium alginate exhibits hydroxyl and carboxylate functional groups that can easily interact with the metal nanoparticles to form composite particles. The research on the preparation of Na-Alg–based nanoparticles and nanoaggregates have been started recently but developed quickly due to their extensive applications in different fields. This review article encircles different methods of preparation of sodium alginate–based metal nanocomposites; analytical techniques reported to monitor the formation of these nanocomposites and used to characterize these nanocomposites as well as applications of these nanocomposites as catalyst, antibacterial, and antifungal agent.
期刊介绍:
Reviews in Chemical Engineering publishes authoritative review articles on all aspects of the broad field of chemical engineering and applied chemistry. Its aim is to develop new insights and understanding and to promote interest and research activity in chemical engineering, as well as the application of new developments in these areas. The bimonthly journal publishes peer-reviewed articles by leading chemical engineers, applied scientists and mathematicians. The broad interest today in solutions through chemistry to some of the world’s most challenging problems ensures that Reviews in Chemical Engineering will play a significant role in the growth of the field as a whole.