Zachary K. Collier, Minji Kong, Olushola Soyoye, Kamal Chawla, Ann M. Aviles, Y. Payne
{"title":"Deep Learning Imputation for Asymmetric and Incomplete Likert-Type Items","authors":"Zachary K. Collier, Minji Kong, Olushola Soyoye, Kamal Chawla, Ann M. Aviles, Y. Payne","doi":"10.3102/10769986231176014","DOIUrl":null,"url":null,"abstract":"Asymmetric Likert-type items in research studies can present several challenges in data analysis, particularly concerning missing data. These items are often characterized by a skewed scaling, where either there is no neutral response option or an unequal number of possible positive and negative responses. The use of conventional techniques, such as discriminant analysis or logistic regression imputation, for handling missing data in asymmetric items may result in significant bias. It is also recommended to exercise caution when employing alternative strategies, such as listwise deletion or mean imputation, because these methods rely on assumptions that are often unrealistic in surveys and rating scales. This article explores the potential of implementing a deep learning-based imputation method. Additionally, we provide access to deep learning-based imputation to a broader group of researchers without requiring advanced machine learning training. We apply the methodology to the Wilmington Street Participatory Action Research Health Project.","PeriodicalId":48001,"journal":{"name":"Journal of Educational and Behavioral Statistics","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Educational and Behavioral Statistics","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.3102/10769986231176014","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 0
Abstract
Asymmetric Likert-type items in research studies can present several challenges in data analysis, particularly concerning missing data. These items are often characterized by a skewed scaling, where either there is no neutral response option or an unequal number of possible positive and negative responses. The use of conventional techniques, such as discriminant analysis or logistic regression imputation, for handling missing data in asymmetric items may result in significant bias. It is also recommended to exercise caution when employing alternative strategies, such as listwise deletion or mean imputation, because these methods rely on assumptions that are often unrealistic in surveys and rating scales. This article explores the potential of implementing a deep learning-based imputation method. Additionally, we provide access to deep learning-based imputation to a broader group of researchers without requiring advanced machine learning training. We apply the methodology to the Wilmington Street Participatory Action Research Health Project.
期刊介绍:
Journal of Educational and Behavioral Statistics, sponsored jointly by the American Educational Research Association and the American Statistical Association, publishes articles that are original and provide methods that are useful to those studying problems and issues in educational or behavioral research. Typical papers introduce new methods of analysis. Critical reviews of current practice, tutorial presentations of less well known methods, and novel applications of already-known methods are also of interest. Papers discussing statistical techniques without specific educational or behavioral interest or focusing on substantive results without developing new statistical methods or models or making novel use of existing methods have lower priority. Simulation studies, either to demonstrate properties of an existing method or to compare several existing methods (without providing a new method), also have low priority. The Journal of Educational and Behavioral Statistics provides an outlet for papers that are original and provide methods that are useful to those studying problems and issues in educational or behavioral research. Typical papers introduce new methods of analysis, provide properties of these methods, and an example of use in education or behavioral research. Critical reviews of current practice, tutorial presentations of less well known methods, and novel applications of already-known methods are also sometimes accepted. Papers discussing statistical techniques without specific educational or behavioral interest or focusing on substantive results without developing new statistical methods or models or making novel use of existing methods have lower priority. Simulation studies, either to demonstrate properties of an existing method or to compare several existing methods (without providing a new method), also have low priority.