N. Rana, S. Kumawat, U. Singh, V. Singh, R. Deshmukh, T. Sharma, H. Sonah
{"title":"Identification of genomic loci governing pericarp colour through GWAS in rice (Oryza sativa L.)","authors":"N. Rana, S. Kumawat, U. Singh, V. Singh, R. Deshmukh, T. Sharma, H. Sonah","doi":"10.31742/ijgpb.82.1.1","DOIUrl":null,"url":null,"abstract":"Rice pericarp colour is one of the nutritional traits that is now gaining attention worldwide. In the present investigation, genome-wide association GWAS) was performed to identify loci governing pericarp colour in rice. A set of 1,349,269 SNPs and precise phenotyping across 325 diverse accessions of rice were used for the GWAS. The accessions belong to five rice isozyme classification groups viz., indica, japonica, aromatic, aus, and admix. The GWAS identified two significant loci gPC5-1and gPC7-1 on chromosomes, 5 and 7, respectively, associated with the pericarp colour in rice. The SNPs on chromosome 7 co-localized with the functionally characterized Os07g0211500 (Rc gene) known to control pericarp colour and Os07g0214900 which is similar to the Chalcone synthase 2(OsCHS2) gene involved in flavonoid synthesis pathway. Linkage disequilibrium analysis across 0.25 Mbp upstream and downstream of these markers suggested three strong linkage blocks on chromosome 7. More interestingly, the novel locus identified on chromosome 5 gPC5-1 does not harbor any homolog of previously reported genes. Therefore, the locus can serve as a basis for identifying a new gene for rice pericarp colour. The results presented here will be helpful to understand the genetic regulation of pericarp colour and for genomic-assisted breeding in rice.","PeriodicalId":13321,"journal":{"name":"Indian Journal of Genetics and Plant Breeding","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Genetics and Plant Breeding","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.31742/ijgpb.82.1.1","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Rice pericarp colour is one of the nutritional traits that is now gaining attention worldwide. In the present investigation, genome-wide association GWAS) was performed to identify loci governing pericarp colour in rice. A set of 1,349,269 SNPs and precise phenotyping across 325 diverse accessions of rice were used for the GWAS. The accessions belong to five rice isozyme classification groups viz., indica, japonica, aromatic, aus, and admix. The GWAS identified two significant loci gPC5-1and gPC7-1 on chromosomes, 5 and 7, respectively, associated with the pericarp colour in rice. The SNPs on chromosome 7 co-localized with the functionally characterized Os07g0211500 (Rc gene) known to control pericarp colour and Os07g0214900 which is similar to the Chalcone synthase 2(OsCHS2) gene involved in flavonoid synthesis pathway. Linkage disequilibrium analysis across 0.25 Mbp upstream and downstream of these markers suggested three strong linkage blocks on chromosome 7. More interestingly, the novel locus identified on chromosome 5 gPC5-1 does not harbor any homolog of previously reported genes. Therefore, the locus can serve as a basis for identifying a new gene for rice pericarp colour. The results presented here will be helpful to understand the genetic regulation of pericarp colour and for genomic-assisted breeding in rice.
期刊介绍:
Advance the cause of genetics and plant breeding and to encourage and promote study and research in these disciplines in the service of agriculture; to disseminate the knowledge of genetics and plant breeding; provide facilities for association and conference among students of genetics and plant breeding and for encouragement of close relationship between them and those in the related sciences; advocate policies in the interest of the nation in the field of genetics and plant breeding, and facilitate international cooperation in the field of genetics and plant breeding.