Ehrenfest time and chaos

D. Shepelyansky
{"title":"Ehrenfest time and chaos","authors":"D. Shepelyansky","doi":"10.4249/scholarpedia.55031","DOIUrl":null,"url":null,"abstract":"The Ehrenfest time gives the scale of time on which the Bohr correspondence principle (Bohr, 1920) remains valid for a quantum evolution of an initial state at high characteristic quantum numbers (or small effective Planck constant ) closely following the corresponding classical distribution. For a narrow initial wave packet the Ehrenfest theorem (Ehrenfest, 1927) guaranties that the average values of quantum operators are close to the corresponding classical averages. For systems with integrable classical dynamics the Ehrenfest time is rather long being generally inversely proportional to the Planck constant (or another power of it). The new nontrivial situation appears for classically chaotic dynamics when nearby trajectories diverge exponentially with time due to exponential instability of motion characterized by the positive Kolmogorov-Sinai entropy . Thus in such semiclassical systems the Ehrenfest time is logarithmically short . The properties of the Ehrenfest time of quantum dynamics of such chaotic systems, with related examples, are discussed below.","PeriodicalId":74760,"journal":{"name":"Scholarpedia journal","volume":"15 1","pages":"55031"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scholarpedia journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4249/scholarpedia.55031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

The Ehrenfest time gives the scale of time on which the Bohr correspondence principle (Bohr, 1920) remains valid for a quantum evolution of an initial state at high characteristic quantum numbers (or small effective Planck constant ) closely following the corresponding classical distribution. For a narrow initial wave packet the Ehrenfest theorem (Ehrenfest, 1927) guaranties that the average values of quantum operators are close to the corresponding classical averages. For systems with integrable classical dynamics the Ehrenfest time is rather long being generally inversely proportional to the Planck constant (or another power of it). The new nontrivial situation appears for classically chaotic dynamics when nearby trajectories diverge exponentially with time due to exponential instability of motion characterized by the positive Kolmogorov-Sinai entropy . Thus in such semiclassical systems the Ehrenfest time is logarithmically short . The properties of the Ehrenfest time of quantum dynamics of such chaotic systems, with related examples, are discussed below.
埃伦费斯特时间与混乱
Ehrenfest时间给出了玻尔对应原理(Bohr,1920)在高特征量子数(或小有效普朗克常数)下对初始状态的量子演化保持有效的时间尺度,该量子演化密切遵循相应的经典分布。对于窄的初始波包,Ehrenfest定理(Ehrenfist,1927)保证量子算符的平均值接近相应的经典平均值。对于具有可积经典动力学的系统,埃伦费斯特时间相当长,通常与普朗克常数(或其另一次方)成反比。当由于以正Kolmogorov-Saiai熵为特征的运动的指数不稳定性,附近的轨迹随时间呈指数发散时,经典混沌动力学出现了新的非平凡情况。因此,在这样的半经典系统中,埃伦费斯特时间是对数短的。下面将讨论这种混沌系统的量子动力学的Ehrenfest时间的性质,以及相关的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信