{"title":"Estimation of Stress-Strength Reliability for Quasi Lindley Distribution","authors":"A. Sadek, M. El-din, Shaimaa Elmeghawry","doi":"10.25728/ASSA.2018.18.4.572","DOIUrl":null,"url":null,"abstract":"This paper discussed the problem of stress-strength reliability model R=Pr(Y< X). It is assumed that the strength of a system X, and the environmental stress applied on it Y, follow the Quasi Lindley Distribution(QLD). Stress-strength reliability is studied using the maximum likelihood, and Bayes estimations. Asymptotic confidence interval for reliability is obtained. Bayesian estimations were proposed using two different methods: Importance Sampling technique, and MCMC technique via Metropolis-Hastings algorithm, under symmetric loss function (squared error) and asymmetric loss functions (linex, general entropy). The behaviors of the maximum likelihood and Bayes estimators of stress-strength reliability have been studied through the Monte Carlo simulation study.","PeriodicalId":39095,"journal":{"name":"Advances in Systems Science and Applications","volume":"18 1","pages":"39-51"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Systems Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25728/ASSA.2018.18.4.572","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 2
Abstract
This paper discussed the problem of stress-strength reliability model R=Pr(Y< X). It is assumed that the strength of a system X, and the environmental stress applied on it Y, follow the Quasi Lindley Distribution(QLD). Stress-strength reliability is studied using the maximum likelihood, and Bayes estimations. Asymptotic confidence interval for reliability is obtained. Bayesian estimations were proposed using two different methods: Importance Sampling technique, and MCMC technique via Metropolis-Hastings algorithm, under symmetric loss function (squared error) and asymmetric loss functions (linex, general entropy). The behaviors of the maximum likelihood and Bayes estimators of stress-strength reliability have been studied through the Monte Carlo simulation study.
期刊介绍:
Advances in Systems Science and Applications (ASSA) is an international peer-reviewed open-source online academic journal. Its scope covers all major aspects of systems (and processes) analysis, modeling, simulation, and control, ranging from theoretical and methodological developments to a large variety of application areas. Survey articles and innovative results are also welcome. ASSA is aimed at the audience of scientists, engineers and researchers working in the framework of these problems. ASSA should be a platform on which researchers will be able to communicate and discuss both their specialized issues and interdisciplinary problems of systems analysis and its applications in science and industry, including data science, artificial intelligence, material science, manufacturing, transportation, power and energy, ecology, corporate management, public governance, finance, and many others.