Estimation of Stress-Strength Reliability for Quasi Lindley Distribution

Q3 Engineering
A. Sadek, M. El-din, Shaimaa Elmeghawry
{"title":"Estimation of Stress-Strength Reliability for Quasi Lindley Distribution","authors":"A. Sadek, M. El-din, Shaimaa Elmeghawry","doi":"10.25728/ASSA.2018.18.4.572","DOIUrl":null,"url":null,"abstract":"This paper discussed the problem of stress-strength reliability model R=Pr(Y< X). It is assumed that the strength of a system X, and the environmental stress applied on it Y, follow the Quasi Lindley Distribution(QLD). Stress-strength reliability is studied using the maximum likelihood, and Bayes estimations. Asymptotic confidence interval for reliability is obtained. Bayesian estimations were proposed using two different methods: Importance Sampling technique, and MCMC technique via Metropolis-Hastings algorithm, under symmetric loss function (squared error) and  asymmetric loss functions (linex, general entropy). The behaviors of the maximum likelihood and Bayes estimators of stress-strength reliability have been studied through the Monte Carlo simulation study.","PeriodicalId":39095,"journal":{"name":"Advances in Systems Science and Applications","volume":"18 1","pages":"39-51"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Systems Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25728/ASSA.2018.18.4.572","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 2

Abstract

This paper discussed the problem of stress-strength reliability model R=Pr(Y< X). It is assumed that the strength of a system X, and the environmental stress applied on it Y, follow the Quasi Lindley Distribution(QLD). Stress-strength reliability is studied using the maximum likelihood, and Bayes estimations. Asymptotic confidence interval for reliability is obtained. Bayesian estimations were proposed using two different methods: Importance Sampling technique, and MCMC technique via Metropolis-Hastings algorithm, under symmetric loss function (squared error) and  asymmetric loss functions (linex, general entropy). The behaviors of the maximum likelihood and Bayes estimators of stress-strength reliability have been studied through the Monte Carlo simulation study.
拟Lindley分布的应力强度可靠性估计
本文讨论了应力强度可靠性模型R=Pr(Y
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Systems Science and Applications
Advances in Systems Science and Applications Engineering-Engineering (all)
CiteScore
1.20
自引率
0.00%
发文量
0
期刊介绍: Advances in Systems Science and Applications (ASSA) is an international peer-reviewed open-source online academic journal. Its scope covers all major aspects of systems (and processes) analysis, modeling, simulation, and control, ranging from theoretical and methodological developments to a large variety of application areas. Survey articles and innovative results are also welcome. ASSA is aimed at the audience of scientists, engineers and researchers working in the framework of these problems. ASSA should be a platform on which researchers will be able to communicate and discuss both their specialized issues and interdisciplinary problems of systems analysis and its applications in science and industry, including data science, artificial intelligence, material science, manufacturing, transportation, power and energy, ecology, corporate management, public governance, finance, and many others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信