Vertex decomposability of complexes associated to forests

IF 0.6 Q3 MATHEMATICS
Anurag Singh
{"title":"Vertex decomposability of complexes associated to forests","authors":"Anurag Singh","doi":"10.22108/TOC.2021.127059.1809","DOIUrl":null,"url":null,"abstract":"In this article‎, ‎we discuss the vertex decomposability of three well-studied simplicial complexes associated to forests‎. ‎In particular‎, ‎we show that the bounded degree complex of a forest and the complex of directed trees of a multidiforest is vertex decomposable‎. ‎We then prove that the non-cover complex of a forest is either contractible or homotopy equivalent to a sphere‎. ‎Finally we provide a complete characterization of forests whose non-cover complexes are vertex decomposable‎.","PeriodicalId":43837,"journal":{"name":"Transactions on Combinatorics","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/TOC.2021.127059.1809","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

In this article‎, ‎we discuss the vertex decomposability of three well-studied simplicial complexes associated to forests‎. ‎In particular‎, ‎we show that the bounded degree complex of a forest and the complex of directed trees of a multidiforest is vertex decomposable‎. ‎We then prove that the non-cover complex of a forest is either contractible or homotopy equivalent to a sphere‎. ‎Finally we provide a complete characterization of forests whose non-cover complexes are vertex decomposable‎.
森林复合体的顶点可分解性
在本文中‎, ‎我们讨论了三个研究得很好的与森林相关的单纯复形的顶点可分解性‎. ‎特别是‎, ‎我们证明了森林的有界度复形和多森林的有向树复形是顶点可分解的‎. ‎然后我们证明了森林的非覆盖复形是可压缩的或等价于球面的同伦论‎. ‎最后,我们提供了一个完整的森林特征,其非覆盖复合体是顶点可分解的‎.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
2
审稿时长
30 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信