Leapheng Uon, C. Ng, Francis Gregory Ng, Sharaful-Ilmi Abdulkadir Paduman, A. Chua
{"title":"A Novel Approach to Optimize Numerical Control Codes Using a Systematic Block Management Method","authors":"Leapheng Uon, C. Ng, Francis Gregory Ng, Sharaful-Ilmi Abdulkadir Paduman, A. Chua","doi":"10.5875/AUSMT.V9I1.1728","DOIUrl":null,"url":null,"abstract":"The numerical control (NC) codes generated from Computer Aided Manufacturing (CAM) software follow the sequence of adding elements to the design. As an alternative, it would be quite beneficial in cost-reduction to optimize the manufacturing sequence to minimize the run time. Accordingly, this paper introduces a novel approach to optimize the numerical control codes generated from a CAM software package using a systematic block management method. To improve the drilling sequence, contours are also considered as block entities in a traveling salesman problem (TSP) with modifications to systematically manage the blocks of code that define the contours. A MATLAB program was created to automatically optimize the numerical codes from a CAM software translator. Because of easier usage and good performance, a partitioned approach for the λ-opt algorithm was implemented instead of the Lin-Kernighan Heuristic (LKH) that has been extensively proven to be effective in optimizing the traveling salesman problem. The new approach was simulated on sample designs and has been shown to achieve at least 15.52% reduction in airtime and 11.32% reduction in tool travel distance. Experimental data showed a 13.45% decrease in total milling time. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License .","PeriodicalId":38109,"journal":{"name":"International Journal of Automation and Smart Technology","volume":"9 1","pages":"23-32"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Automation and Smart Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5875/AUSMT.V9I1.1728","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
Abstract
The numerical control (NC) codes generated from Computer Aided Manufacturing (CAM) software follow the sequence of adding elements to the design. As an alternative, it would be quite beneficial in cost-reduction to optimize the manufacturing sequence to minimize the run time. Accordingly, this paper introduces a novel approach to optimize the numerical control codes generated from a CAM software package using a systematic block management method. To improve the drilling sequence, contours are also considered as block entities in a traveling salesman problem (TSP) with modifications to systematically manage the blocks of code that define the contours. A MATLAB program was created to automatically optimize the numerical codes from a CAM software translator. Because of easier usage and good performance, a partitioned approach for the λ-opt algorithm was implemented instead of the Lin-Kernighan Heuristic (LKH) that has been extensively proven to be effective in optimizing the traveling salesman problem. The new approach was simulated on sample designs and has been shown to achieve at least 15.52% reduction in airtime and 11.32% reduction in tool travel distance. Experimental data showed a 13.45% decrease in total milling time. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License .
期刊介绍:
International Journal of Automation and Smart Technology (AUSMT) is a peer-reviewed, open-access journal devoted to publishing research papers in the fields of automation and smart technology. Currently, the journal is abstracted in Scopus, INSPEC and DOAJ (Directory of Open Access Journals). The research areas of the journal include but are not limited to the fields of mechatronics, automation, ambient Intelligence, sensor networks, human-computer interfaces, and robotics. These technologies should be developed with the major purpose to increase the quality of life as well as to work towards environmental, economic and social sustainability for future generations. AUSMT endeavors to provide a worldwide forum for the dynamic exchange of ideas and findings from research of different disciplines from around the world. Also, AUSMT actively seeks to encourage interaction and cooperation between academia and industry along the fields of automation and smart technology. For the aforementioned purposes, AUSMT maps out 5 areas of interests. Each of them represents a pillar for better future life: - Intelligent Automation Technology. - Ambient Intelligence, Context Awareness, and Sensor Networks. - Human-Computer Interface. - Optomechatronic Modules and Systems. - Robotics, Intelligent Devices and Systems.