Wave theory of the laminated plates with approximate consideration of the transverse shear

A. Sibiryakov
{"title":"Wave theory of the laminated plates with approximate consideration of the transverse shear","authors":"A. Sibiryakov","doi":"10.26732/j.st.2021.4.07","DOIUrl":null,"url":null,"abstract":"Composite materials are widely used in the production of aircraft for various purposes. Having several unique properties, composites, due to their heterogeneous structure, are poorly resistant to shock loads. Impulse action spreads inside the material in the form of stress waves, which are reflected on internal inhomogeneities, can overlap, and create very significant bursts of stress. This often leads to the well-known types of failure – spalling and delamination. Practice shows that these fractures occur almost immediately after the loading impulse. To verify the spalling strength, it is necessary to consider the initial unsteady phase of the response to the external impulse. There are sufficiently reliable theories to verify this strength; usually, they do not take transverse shear into account, otherwise the solution becomes unnecessarily cumbersome and poorly observable. Nevertheless, attempts are often made to refine the calculations by approximate consideration of transverse shear. This article presents the wave theory of laminated plates with approximate consideration of transverse shear. The possibility of specifying the calculation of impulse-loaded plates is considered. The inconsistency of the resulting model is proved.","PeriodicalId":33896,"journal":{"name":"Kosmicheskie apparaty i tekhnologii","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kosmicheskie apparaty i tekhnologii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26732/j.st.2021.4.07","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Composite materials are widely used in the production of aircraft for various purposes. Having several unique properties, composites, due to their heterogeneous structure, are poorly resistant to shock loads. Impulse action spreads inside the material in the form of stress waves, which are reflected on internal inhomogeneities, can overlap, and create very significant bursts of stress. This often leads to the well-known types of failure – spalling and delamination. Practice shows that these fractures occur almost immediately after the loading impulse. To verify the spalling strength, it is necessary to consider the initial unsteady phase of the response to the external impulse. There are sufficiently reliable theories to verify this strength; usually, they do not take transverse shear into account, otherwise the solution becomes unnecessarily cumbersome and poorly observable. Nevertheless, attempts are often made to refine the calculations by approximate consideration of transverse shear. This article presents the wave theory of laminated plates with approximate consideration of transverse shear. The possibility of specifying the calculation of impulse-loaded plates is considered. The inconsistency of the resulting model is proved.
近似考虑横向剪切的层合板波动理论
复合材料广泛用于生产各种用途的飞机。复合材料具有几种独特的性能,由于其不均匀的结构,对冲击载荷的抵抗力很差。脉冲作用以应力波的形式在材料内部传播,应力波在内部不均匀性上反射,可以重叠,并产生非常显著的应力爆发。这通常会导致众所周知的失效类型——剥落和分层。实践表明,这些断裂几乎在加载脉冲后立即发生。为了验证剥落强度,有必要考虑外部脉冲响应的初始非稳定阶段。有足够可靠的理论来验证这种强度;通常,它们不考虑横向剪切,否则解决方案会变得不必要的繁琐和难以观察。然而,通常会尝试通过近似考虑横向剪切来改进计算。本文提出了近似考虑横向剪切的层合板波动理论。考虑了指定冲击载荷板计算的可能性。证明了所得模型的不一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
24
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信