S. Taarabti
求助PDF
{"title":"Nonlocal eigenvalue problems with indefinite weight","authors":"S. Taarabti","doi":"10.31392/mfat-npu26_3.2020.09","DOIUrl":null,"url":null,"abstract":"In the present paper, we consider a class of eigenvalue problems driven by a nonlocal integro-di erential operator \\scrL K with Dirichlet boundary conditions. Under certain assumptions on p and q, we establish that any \\lambda > 0 su ciently small is an eigenvalue of the nonhomogeneous nonlocal problem (\\scrP \\lambda ). ®§£«ï¤ õâìáï a« á á ̄¥aâà «ì ̈å § ¤ ç, ̄®¢'ï§ ̈å ÷§ ¥«®a «ì ̈¬ ÷⥣த ̈ä¥à¥æ÷ «ì ̈¬ ® ̄¥à â®à®¬ \\scrL K ÷§ aà ©®¢®î 㬮¢®î ̈à ̈å«¥. ̄¥¢ ̈å ̄à ̈ ̄ãé¥ì 鮤® p ÷ q ¤®¢¥¤¥®, é® a®¦¥ ¤®áâ ì® ¬ «¥ \\lambda > 0 õ ¢« á ̈¬ § ç¥ï¬ ¥®¤®à÷¤®ù ¥«®a «ì®ù § ¤ ç÷ (\\scrP \\lambda ).","PeriodicalId":44325,"journal":{"name":"Methods of Functional Analysis and Topology","volume":"26 1","pages":"283-294"},"PeriodicalIF":0.2000,"publicationDate":"2020-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods of Functional Analysis and Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31392/mfat-npu26_3.2020.09","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2
引用
批量引用
不定权的非局部特征值问题
在本文中,我们考虑了一类由具有Dirichlet边界条件的非局部积分微分算子\scrL K驱动的特征值问题。在对p和q的某些假设下,我们证明了任何λ>0足够小都是非齐次非局部问题(\scrP\lambda)的特征值。÷®§§§§®“'ï§776;委®a 776欧元®® •®属于®ŞscrL K§aà©®“®î®“®编号776à编号776å135-776åà776é鮓® p÷q¢®¢¥®, y® 一®“®白天® λ>0õá776;»®我不知道。®÷®[未知]®对®§§ç÷(\scrP\lambda)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。