A selective overview of sparse sufficient dimension reduction

IF 0.7 Q3 STATISTICS & PROBABILITY
Lu Li, Xuerong Meggie Wen, Zhou Yu
{"title":"A selective overview of sparse sufficient dimension reduction","authors":"Lu Li, Xuerong Meggie Wen, Zhou Yu","doi":"10.1080/24754269.2020.1829389","DOIUrl":null,"url":null,"abstract":"High-dimensional data analysis has been a challenging issue in statistics. Sufficient dimension reduction aims to reduce the dimension of the predictors by replacing the original predictors with a minimal set of their linear combinations without loss of information. However, the estimated linear combinations generally consist of all of the variables, making it difficult to interpret. To circumvent this difficulty, sparse sufficient dimension reduction methods were proposed to conduct model-free variable selection or screening within the framework of sufficient dimension reduction. We review the current literature of sparse sufficient dimension reduction and do some further investigation in this paper.","PeriodicalId":22070,"journal":{"name":"Statistical Theory and Related Fields","volume":"4 1","pages":"121 - 133"},"PeriodicalIF":0.7000,"publicationDate":"2020-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/24754269.2020.1829389","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Theory and Related Fields","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/24754269.2020.1829389","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 4

Abstract

High-dimensional data analysis has been a challenging issue in statistics. Sufficient dimension reduction aims to reduce the dimension of the predictors by replacing the original predictors with a minimal set of their linear combinations without loss of information. However, the estimated linear combinations generally consist of all of the variables, making it difficult to interpret. To circumvent this difficulty, sparse sufficient dimension reduction methods were proposed to conduct model-free variable selection or screening within the framework of sufficient dimension reduction. We review the current literature of sparse sufficient dimension reduction and do some further investigation in this paper.
稀疏充分降维的一个选择性综述
高维数据分析一直是统计学中一个具有挑战性的问题。充分降维旨在通过用它们的线性组合的最小集合替换原始预测因子来降低预测因子的维数,而不会丢失信息。然而,估计的线性组合通常由所有变量组成,因此很难解释。为了克服这一困难,提出了稀疏充分降维方法,在充分降维的框架内进行无模型变量选择或筛选。我们回顾了目前稀疏充分降维的文献,并在本文中做了一些进一步的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
20.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信