{"title":"Regional thermo-rheological field related to granite emplacement in the upper crust: implications for the Larderello area (Tuscany, Italy)","authors":"F. Rochira, A. Caggianelli, S. de Lorenzo","doi":"10.1080/09853111.2018.1488912","DOIUrl":null,"url":null,"abstract":"ABSTRACT We modelled thermo-rheological perturbations, related to the emplacement of a magmatic body in the upper crust. This approach was considered relevant for the areas characterized by elevated surface heat flow and chiefly for the geothermal fields. The numerical conductive thermal model applied to the Larderello geothermal area in Tuscany, allowed to constrain size, depth and timing of emplacement of the pluton. We inferred that the emplacement of a magmatic body, at a minimum depth of 3 km, having a horizontal extension of 14 km and a maximum thickness of 8 km, can reasonably reproduce the observed regional surface heat flow anomaly of the Larderello area, when 300 (± 100) kyr are elapsed from the magma emplacement. Even assuming an incremental growth, the first magma injection should not be older than 1 ± 0.3 Ma. Results of the thermal model were used to set up a rheological model and to simulate the drifting of the brittle-ductile transition during the cooling of the pluton. A comparison with the K-horizon profile, a prominent seismic reflector in the Larderello area, was then performed. It was found that the K-horizon approximately corresponds with the pluton roof and with the current location of the brittle-ductile transition.","PeriodicalId":50420,"journal":{"name":"Geodinamica Acta","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/09853111.2018.1488912","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geodinamica Acta","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09853111.2018.1488912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 13
Abstract
ABSTRACT We modelled thermo-rheological perturbations, related to the emplacement of a magmatic body in the upper crust. This approach was considered relevant for the areas characterized by elevated surface heat flow and chiefly for the geothermal fields. The numerical conductive thermal model applied to the Larderello geothermal area in Tuscany, allowed to constrain size, depth and timing of emplacement of the pluton. We inferred that the emplacement of a magmatic body, at a minimum depth of 3 km, having a horizontal extension of 14 km and a maximum thickness of 8 km, can reasonably reproduce the observed regional surface heat flow anomaly of the Larderello area, when 300 (± 100) kyr are elapsed from the magma emplacement. Even assuming an incremental growth, the first magma injection should not be older than 1 ± 0.3 Ma. Results of the thermal model were used to set up a rheological model and to simulate the drifting of the brittle-ductile transition during the cooling of the pluton. A comparison with the K-horizon profile, a prominent seismic reflector in the Larderello area, was then performed. It was found that the K-horizon approximately corresponds with the pluton roof and with the current location of the brittle-ductile transition.
期刊介绍:
Geodinamica Acta provides an international and interdisciplinary forum for the publication of results of recent research dealing with both internal and external geodynamics. Its aims to promote discussion between the various disciplines that work on the dynamics of the lithosphere and hydrosphere. There are no constraints over themes, provided the main thrust of the paper relates to Earth''s internal and external geodynamics. The Journal encourages the submission of papers in all fields of earth sciences, such as biostratigraphy, geochemistry, geochronology and thermochronology, geohazards and their societal impacts, geomorphology, geophysics, glaciology, igneous and metamorphic petrology, magmatism, marine geology, metamorphism, mineral-deposits and energy resources, mineralogy, orogeny, palaeoclimatology, palaeoecology, paleoceanograpgy, palaeontology, petroleum geology, sedimentology, seismology and earthquakes, stratigraphy, structural geology, surface processes, tectonics (neoteoctonic, plate tectonics, seismo-tectonics, Active tectonics) and volcanism.
Geodinamica Acta publishes high quality, peer-reviewed original and timely scientific papers, comprehensive review articles on hot topics of current interest, rapid communications relating to a significant advance in the earth sciences with broad interest, and discussions of papers that have already appeared in recent issues of the journal. Book reviews are also included. Submitted papers must have international appeal and regional implications; they should present work that would be of interest to many different specialists. Geographic coverage is global and work on any part of the world is considered. The Journal also publishes thematic sets of papers on topical aspects of earth sciences or special issues of selected papers from conferences.