Novel channel edge doping for hump reduction in LTPS TFTs

IF 3.7 3区 工程技术 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Ki Woo Kim, Heesook Lee, Hyun Jae Kim
{"title":"Novel channel edge doping for hump reduction in LTPS TFTs","authors":"Ki Woo Kim, Heesook Lee, Hyun Jae Kim","doi":"10.1080/15980316.2022.2029590","DOIUrl":null,"url":null,"abstract":"We proposed a new channel edge doping (CED) technique for hump reduction in n-type low-temperature polycrystalline silicon (LTPS) thin-film transistors (TFTs) and validated it through experiments and technology computer-aided design (TCAD) simulations. The TCAD simulations indicate that the hump effect in LTPS TFTs is due to the high electron (e−) concentration (∼1016 cm−3) induced by an enhanced electric field (e-field) at the channel edge region along the width direction. In order to reduce the hump effect, we focused on decreasing the e− concentration at the channel edge. The CED process led to the selective control of the e− concentration at the channel edge. The decrease in the maximum e− concentration from 3.4 × 1016 to 2.9 × 1014 cm−3 at the channel edge using CED led to an effective reduction in the hump characteristic of LTPS TFTs. Furthermore, the CED process does not require any additional masks and is highly effective in hump reduction, rendering it beneficial for manufacturing active-matrix organic light-emitting diode displays.","PeriodicalId":16257,"journal":{"name":"Journal of Information Display","volume":"23 1","pages":"129 - 135"},"PeriodicalIF":3.7000,"publicationDate":"2022-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information Display","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/15980316.2022.2029590","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We proposed a new channel edge doping (CED) technique for hump reduction in n-type low-temperature polycrystalline silicon (LTPS) thin-film transistors (TFTs) and validated it through experiments and technology computer-aided design (TCAD) simulations. The TCAD simulations indicate that the hump effect in LTPS TFTs is due to the high electron (e−) concentration (∼1016 cm−3) induced by an enhanced electric field (e-field) at the channel edge region along the width direction. In order to reduce the hump effect, we focused on decreasing the e− concentration at the channel edge. The CED process led to the selective control of the e− concentration at the channel edge. The decrease in the maximum e− concentration from 3.4 × 1016 to 2.9 × 1014 cm−3 at the channel edge using CED led to an effective reduction in the hump characteristic of LTPS TFTs. Furthermore, the CED process does not require any additional masks and is highly effective in hump reduction, rendering it beneficial for manufacturing active-matrix organic light-emitting diode displays.
用于LTPS TFTs峰峰还原的新型通道边缘掺杂
我们提出了一种新的沟道边缘掺杂(CED)技术,用于降低n型低温多晶硅(LTPS)薄膜晶体管(TFT)的驼峰,并通过实验和技术计算机辅助设计(TCAD)模拟进行了验证。TCAD模拟表明,LTPS TFT中的驼峰效应是由于沟道边缘区域沿宽度方向的增强电场(电场)引起的高电子(e−)浓度(~1016 cm−3)。为了减少驼峰效应,我们重点降低了通道边缘的e−浓度。CED过程导致了对通道边缘e−浓度的选择性控制。最大e−浓度从3.4下降 × 1016至2.9 × 使用CED在沟道边缘处1014 cm-3导致LTPS TFT的驼峰特性的有效降低。此外,CED工艺不需要任何额外的掩模,并且在驼峰减少方面非常有效,使其有利于制造有源矩阵有机发光二极管显示器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Information Display
Journal of Information Display MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
7.10
自引率
5.40%
发文量
27
审稿时长
30 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信