Dynamics and steady state of squirmer motion in liquid crystal

IF 2.3 4区 数学 Q1 MATHEMATICS, APPLIED
L. Berlyand, Haiyang Chi, M. Potomkin, N. Yip
{"title":"Dynamics and steady state of squirmer motion in liquid crystal","authors":"L. Berlyand, Haiyang Chi, M. Potomkin, N. Yip","doi":"10.1017/s0956792523000177","DOIUrl":null,"url":null,"abstract":"\n We analyse a nonlinear partial differential equation system describing the motion of a microswimmer in a nematic liquid crystal environment. For the microswimmer’s motility, the squirmer model is used in which self-propulsion enters the model through the slip velocity on the microswimmer’s surface. The liquid crystal is described using the well-established Beris–Edwards formulation. In previous computational studies, it was shown that the squirmer, regardless of its initial configuration, eventually orients itself either parallel or perpendicular to the preferred orientation dictated by the liquid crystal. Furthermore, the corresponding solution of the coupled nonlinear system converges to a steady state. In this work, we rigorously establish the existence of steady state and also the finite-time existence for the time-dependent problem in a periodic domain. Finally, we will use a two-scale asymptotic expansion to derive a homogenised model for the collective swimming of squirmers as they reach their steady-state orientation and speed.","PeriodicalId":51046,"journal":{"name":"European Journal of Applied Mathematics","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2022-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0956792523000177","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

Abstract

We analyse a nonlinear partial differential equation system describing the motion of a microswimmer in a nematic liquid crystal environment. For the microswimmer’s motility, the squirmer model is used in which self-propulsion enters the model through the slip velocity on the microswimmer’s surface. The liquid crystal is described using the well-established Beris–Edwards formulation. In previous computational studies, it was shown that the squirmer, regardless of its initial configuration, eventually orients itself either parallel or perpendicular to the preferred orientation dictated by the liquid crystal. Furthermore, the corresponding solution of the coupled nonlinear system converges to a steady state. In this work, we rigorously establish the existence of steady state and also the finite-time existence for the time-dependent problem in a periodic domain. Finally, we will use a two-scale asymptotic expansion to derive a homogenised model for the collective swimming of squirmers as they reach their steady-state orientation and speed.
液晶中蠕动运动的动力学与稳态
我们分析了一个描述向列型液晶环境中微游泳器运动的非线性偏微分方程组。对于微游动器的运动,使用蠕动器模型,其中自推进通过微游动器表面的滑动速度进入模型。液晶是使用公认的贝里斯-爱德华兹公式描述的。在之前的计算研究中,已经表明蠕动器,无论其初始配置如何,最终都会将自己定向为平行或垂直于液晶指定的首选定向。此外,耦合非线性系统的相应解收敛到稳态。在这项工作中,我们严格地建立了周期域中含时问题的稳态存在性和有限时间存在性。最后,我们将使用两个尺度的渐近展开来导出蠕动体在达到稳态方向和速度时集体游动的均匀化模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.70
自引率
0.00%
发文量
31
审稿时长
>12 weeks
期刊介绍: Since 2008 EJAM surveys have been expanded to cover Applied and Industrial Mathematics. Coverage of the journal has been strengthened in probabilistic applications, while still focusing on those areas of applied mathematics inspired by real-world applications, and at the same time fostering the development of theoretical methods with a broad range of applicability. Survey papers contain reviews of emerging areas of mathematics, either in core areas or with relevance to users in industry and other disciplines. Research papers may be in any area of applied mathematics, with special emphasis on new mathematical ideas, relevant to modelling and analysis in modern science and technology, and the development of interesting mathematical methods of wide applicability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信