Microscopic tridomain model of electrical activity in the heart with dynamical gap junctions. Part 2 – Derivation of the macroscopic tridomain model by unfolding homogenization method

IF 1.1 4区 数学 Q2 MATHEMATICS, APPLIED
Fakhrielddine Bader, M. Bendahmane, Mazen Saad, Raafat Talhouk
{"title":"Microscopic tridomain model of electrical activity in the heart with dynamical gap junctions. Part 2 – Derivation of the macroscopic tridomain model by unfolding homogenization method","authors":"Fakhrielddine Bader, M. Bendahmane, Mazen Saad, Raafat Talhouk","doi":"10.3233/ASY-221804","DOIUrl":null,"url":null,"abstract":"We study the homogenization of a novel microscopic tridomain system, allowing for a more detailed analysis of the properties of cardiac conduction than the classical bidomain and monodomain models. In (Acta Appl.Math. 179 (2022) 1–35), we detail this model in which gap junctions are considered as the connections between adjacent cells in cardiac muscle and could serve as alternative or supporting pathways for cell-to-cell electrical signal propagation. Departing from this microscopic cellular model, we apply the periodic unfolding method to derive the macroscopic tridomain model. Several difficulties prevent the application of unfolding homogenization results, including the degenerate temporal structure of the tridomain equations and a nonlinear dynamic boundary condition on the cellular membrane. To prove the convergence of the nonlinear terms, especially those defined on the microscopic interface, we use the boundary unfolding operator and a Kolmogorov–Riesz compactness’s result.","PeriodicalId":55438,"journal":{"name":"Asymptotic Analysis","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asymptotic Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3233/ASY-221804","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2

Abstract

We study the homogenization of a novel microscopic tridomain system, allowing for a more detailed analysis of the properties of cardiac conduction than the classical bidomain and monodomain models. In (Acta Appl.Math. 179 (2022) 1–35), we detail this model in which gap junctions are considered as the connections between adjacent cells in cardiac muscle and could serve as alternative or supporting pathways for cell-to-cell electrical signal propagation. Departing from this microscopic cellular model, we apply the periodic unfolding method to derive the macroscopic tridomain model. Several difficulties prevent the application of unfolding homogenization results, including the degenerate temporal structure of the tridomain equations and a nonlinear dynamic boundary condition on the cellular membrane. To prove the convergence of the nonlinear terms, especially those defined on the microscopic interface, we use the boundary unfolding operator and a Kolmogorov–Riesz compactness’s result.
具有动态间隙连接的心脏电活动的微观三域模型。第二部分-用展开均匀化方法推导宏观三域模型
我们研究了一种新的微观三畴系统的均匀化,与经典的双畴和单畴模型相比,可以更详细地分析心脏传导的特性。在(Acta Appl.Math.179(2022)1-35)中,我们详细介绍了这个模型,其中间隙连接被认为是心肌中相邻细胞之间的连接,可以作为细胞间电信号传播的替代或支持途径。从这种微观细胞模型出发,我们应用周期展开方法导出了宏观三畴模型。一些困难阻碍了展开均匀化结果的应用,包括三域方程的退化时间结构和细胞膜上的非线性动态边界条件。为了证明非线性项的收敛性,特别是在微观界面上定义的非线性项,我们使用边界展开算子和Kolmogorov–Riesz紧致性的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Asymptotic Analysis
Asymptotic Analysis 数学-应用数学
CiteScore
1.90
自引率
7.10%
发文量
91
审稿时长
6 months
期刊介绍: The journal Asymptotic Analysis fulfills a twofold function. It aims at publishing original mathematical results in the asymptotic theory of problems affected by the presence of small or large parameters on the one hand, and at giving specific indications of their possible applications to different fields of natural sciences on the other hand. Asymptotic Analysis thus provides mathematicians with a concentrated source of newly acquired information which they may need in the analysis of asymptotic problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信