Veternik Marcel, Martvon Lukas, Misek Jakub, Simera Michal, Poliacek Ivan
{"title":"Computer Modeling of D, L – Homocysteic Acid Microinjection into the Bötzinger Complex Area","authors":"Veternik Marcel, Martvon Lukas, Misek Jakub, Simera Michal, Poliacek Ivan","doi":"10.2478/acm-2022-0002","DOIUrl":null,"url":null,"abstract":"Abstract The impact of D,L – homocysteic acid (DLH) microinjection (non-specific glutamate receptor agonist that causes excitation of neurons) into the Bötzinger complex area (BOT) was simulated using computer model of quiet breathing and cough reflex. Integrated signals from simulated neuronal populations innervating inspiratory phrenic and expiratory lumbar motoneurons were obtained. We analysed durations and amplitudes of these “pre-phrenic and pre-lumbar” activities during quiet breathing and cough reflex and the number of coughs elicited by a fictive 10-second-long stimulation. Model fibre population provides virtual DLH related excitation to expiratory neuronal populations with augmenting discharge pattern (BOT neurons). The excitation was modelled by a higher number of fibres and terminals (simulated a higher number of excitatory inputs) or by a higher synaptic strength (simulated a higher effect of excitatory inputs). Our simulations have demonstrated a high analogy of cough and breathing changes to those observed in animal experiments. The simulated neuronal excitations in the BOT led to cough depression represented by a lower cough number and a cough neuronal activity of the lumbar nerve. Despite the shortening of the phrenic activity during cough (compared to quiet breathing), which was not observed in animal experiments, our simulations confirm the ability of the computer model to simulate motor processes in the respiratory system. The computer model of functional respiratory / cough neural network is capable to confirm and / or predict the results obtained on animals.","PeriodicalId":30233,"journal":{"name":"Acta Medica Martiniana","volume":"22 1","pages":"8 - 14"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Medica Martiniana","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/acm-2022-0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The impact of D,L – homocysteic acid (DLH) microinjection (non-specific glutamate receptor agonist that causes excitation of neurons) into the Bötzinger complex area (BOT) was simulated using computer model of quiet breathing and cough reflex. Integrated signals from simulated neuronal populations innervating inspiratory phrenic and expiratory lumbar motoneurons were obtained. We analysed durations and amplitudes of these “pre-phrenic and pre-lumbar” activities during quiet breathing and cough reflex and the number of coughs elicited by a fictive 10-second-long stimulation. Model fibre population provides virtual DLH related excitation to expiratory neuronal populations with augmenting discharge pattern (BOT neurons). The excitation was modelled by a higher number of fibres and terminals (simulated a higher number of excitatory inputs) or by a higher synaptic strength (simulated a higher effect of excitatory inputs). Our simulations have demonstrated a high analogy of cough and breathing changes to those observed in animal experiments. The simulated neuronal excitations in the BOT led to cough depression represented by a lower cough number and a cough neuronal activity of the lumbar nerve. Despite the shortening of the phrenic activity during cough (compared to quiet breathing), which was not observed in animal experiments, our simulations confirm the ability of the computer model to simulate motor processes in the respiratory system. The computer model of functional respiratory / cough neural network is capable to confirm and / or predict the results obtained on animals.
期刊介绍:
Acta Medica Martiniana is a medical scientific journal, first published in print form in December 2001. It is a continuation of the journal / almanac Folia Medica Martiniana (1971 - 1996). The journal‘s owner is the Jessenius Faculty of Medicine, Comenius University, Slovakia. Dissemination of research results and scientific knowledge from all areas of medicine and nursing. Stimulation, facilitation and supporting of publication activity for the young medical research and clinical generation. The contributions of young novice authors (PhD students and post-doctorials) are particularly welcome. Acta Medica Martiniana is an open-access journal, with a periodicity of publishing three times per year (Apr/Aug/Dec). It covers a wide range of basic medical disciplines, such as anatomy, histology, biochemistry, human physiology, pharmacology, etc., as well as all clinical areas incl. preventive medicine, public health and nursing. Interdisciplinary and multidisciplinary manuscripts, including papers from all areas of biomedical research, are welcome.