{"title":"Deep spatio-temporal sparse decomposition for trend prediction and anomaly detection in cardiac electrical conduction","authors":"Xinyu Zhao, Hao Yan, Zhiyong Hu, D. Du","doi":"10.1080/24725579.2021.1982081","DOIUrl":null,"url":null,"abstract":"Abstract Electrical conduction among cardiac tissue is commonly modeled with partial differential equations, i.e., reaction-diffusion equation, where the reaction term describes cellular stimulation and diffusion term describes electrical propagation. Detecting and identifying of cardiac cells that produce abnormal electrical impulses in such nonlinear dynamic systems are important for efficient treatment and planning. To model the nonlinear dynamics, simulation has been widely used in both cardiac research and clinical study to investigate cardiac disease mechanisms and develop new treatment designs. However, existing cardiac models have a great level of complexity, and the simulation is often time-consuming. We propose a deep spatio-temporal sparse decomposition (DSTSD) approach to bypass the time-consuming cardiac partial differential equations with the deep spatio-temporal model and detect the time and location of the anomaly (i.e., malfunctioning cardiac cells). This approach is validated from the data set generated from the Courtemanche-Ramirez-Nattel (CRN) model, which is widely used to model the propagation of the transmembrane potential across the cross neuron membrane. The proposed DSTSD achieved the best accuracy in terms of spatio-temporal mean trend prediction and anomaly detection.","PeriodicalId":37744,"journal":{"name":"IISE Transactions on Healthcare Systems Engineering","volume":"12 1","pages":"150 - 164"},"PeriodicalIF":1.5000,"publicationDate":"2021-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IISE Transactions on Healthcare Systems Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/24725579.2021.1982081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 6
Abstract
Abstract Electrical conduction among cardiac tissue is commonly modeled with partial differential equations, i.e., reaction-diffusion equation, where the reaction term describes cellular stimulation and diffusion term describes electrical propagation. Detecting and identifying of cardiac cells that produce abnormal electrical impulses in such nonlinear dynamic systems are important for efficient treatment and planning. To model the nonlinear dynamics, simulation has been widely used in both cardiac research and clinical study to investigate cardiac disease mechanisms and develop new treatment designs. However, existing cardiac models have a great level of complexity, and the simulation is often time-consuming. We propose a deep spatio-temporal sparse decomposition (DSTSD) approach to bypass the time-consuming cardiac partial differential equations with the deep spatio-temporal model and detect the time and location of the anomaly (i.e., malfunctioning cardiac cells). This approach is validated from the data set generated from the Courtemanche-Ramirez-Nattel (CRN) model, which is widely used to model the propagation of the transmembrane potential across the cross neuron membrane. The proposed DSTSD achieved the best accuracy in terms of spatio-temporal mean trend prediction and anomaly detection.
期刊介绍:
IISE Transactions on Healthcare Systems Engineering aims to foster the healthcare systems community by publishing high quality papers that have a strong methodological focus and direct applicability to healthcare systems. Published quarterly, the journal supports research that explores: · Healthcare Operations Management · Medical Decision Making · Socio-Technical Systems Analysis related to healthcare · Quality Engineering · Healthcare Informatics · Healthcare Policy We are looking forward to accepting submissions that document the development and use of industrial and systems engineering tools and techniques including: · Healthcare operations research · Healthcare statistics · Healthcare information systems · Healthcare work measurement · Human factors/ergonomics applied to healthcare systems Research that explores the integration of these tools and techniques with those from other engineering and medical disciplines are also featured. We encourage the submission of clinical notes, or practice notes, to show the impact of contributions that will be published. We also encourage authors to collect an impact statement from their clinical partners to show the impact of research in the clinical practices.