Existence and concentration of ground-states for fractional Choquard equation with indefinite potential

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Wen Zhang, Shuai Yuan, Lixi Wen
{"title":"Existence and concentration of ground-states for fractional Choquard equation with indefinite potential","authors":"Wen Zhang, Shuai Yuan, Lixi Wen","doi":"10.1515/anona-2022-0255","DOIUrl":null,"url":null,"abstract":"Abstract This paper is concerned with existence and concentration properties of ground-state solutions to the following fractional Choquard equation with indefinite potential: ( − Δ ) s u + V ( x ) u = ∫ R N A ( ε y ) ∣ u ( y ) ∣ p ∣ x − y ∣ μ d y A ( ε x ) ∣ u ( x ) ∣ p − 2 u ( x ) , x ∈ R N , {\\left(-\\Delta )}^{s}u+V\\left(x)u=\\left(\\mathop{\\int }\\limits_{{{\\mathbb{R}}}^{N}}\\frac{A\\left(\\varepsilon y)| u(y){| }^{p}}{| x-y{| }^{\\mu }}{\\rm{d}}y\\right)A\\left(\\varepsilon x)| u\\left(x){| }^{p-2}u\\left(x),\\hspace{1em}x\\in {{\\mathbb{R}}}^{N}, where s ∈ ( 0 , 1 ) s\\in \\left(0,1) , N > 2 s N\\gt 2s , 0 < μ < 2 s 0\\lt \\mu \\lt 2s , 2 < p < 2 N − 2 μ N − 2 s 2\\lt p\\lt \\frac{2N-2\\mu }{N-2s} , and ε \\varepsilon is a positive parameter. Under some natural hypotheses on the potentials V V and A A , using the generalized Nehari manifold method, we obtain the existence of ground-state solutions. Moreover, we investigate the concentration behavior of ground-state solutions that concentrate at global maximum points of A A as ε → 0 \\varepsilon \\to 0 .","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2022-0255","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 24

Abstract

Abstract This paper is concerned with existence and concentration properties of ground-state solutions to the following fractional Choquard equation with indefinite potential: ( − Δ ) s u + V ( x ) u = ∫ R N A ( ε y ) ∣ u ( y ) ∣ p ∣ x − y ∣ μ d y A ( ε x ) ∣ u ( x ) ∣ p − 2 u ( x ) , x ∈ R N , {\left(-\Delta )}^{s}u+V\left(x)u=\left(\mathop{\int }\limits_{{{\mathbb{R}}}^{N}}\frac{A\left(\varepsilon y)| u(y){| }^{p}}{| x-y{| }^{\mu }}{\rm{d}}y\right)A\left(\varepsilon x)| u\left(x){| }^{p-2}u\left(x),\hspace{1em}x\in {{\mathbb{R}}}^{N}, where s ∈ ( 0 , 1 ) s\in \left(0,1) , N > 2 s N\gt 2s , 0 < μ < 2 s 0\lt \mu \lt 2s , 2 < p < 2 N − 2 μ N − 2 s 2\lt p\lt \frac{2N-2\mu }{N-2s} , and ε \varepsilon is a positive parameter. Under some natural hypotheses on the potentials V V and A A , using the generalized Nehari manifold method, we obtain the existence of ground-state solutions. Moreover, we investigate the concentration behavior of ground-state solutions that concentrate at global maximum points of A A as ε → 0 \varepsilon \to 0 .
具有不定势的分数阶Choquard方程基态的存在与集中
摘要本文研究了具有不定势的分数阶Choquard方程基态解的存在性和集中性:(−Δ)su+V(x)u=ŞR N A(εy)Şu(y)Ş^{s}u+V\left(x)u=\left^{p-2}u\left(x),\ hspace{1em}x\在{\mathbb{R}}^{N}中,其中s∈(0,1)s\in\left(0,0),N>2s N\gt 2s,0<μ<2s 0\lt\mu\lt 2s,2
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信