Shahin Rajaei Qazlue, Ahmad Mehrabian, K. Khalili-Damghani, M. Amirkhan
{"title":"A dynamic multi-stage network data envelopment analysis approach for evaluating performance of wheat farms","authors":"Shahin Rajaei Qazlue, Ahmad Mehrabian, K. Khalili-Damghani, M. Amirkhan","doi":"10.1108/jm2-09-2022-0213","DOIUrl":null,"url":null,"abstract":"\nPurpose\nBecause of the importance of the wheat industry in the economy, a real-featured performance measurement approach is essential for the wheat production process. The purpose of this paper is to develop a data envelopment analysis (DEA) model that is fully compatible with the wheat production process so that managers and farmers can use it to evaluate the efficiency of wheat farms for strategic decisions.\n\n\nDesign/methodology/approach\nA dynamic multi-stage network DEA model is developed to evaluate the efficiency of wheat production farms in short-term (two-year) and long-term (eight-year) periods.\n\n\nFindings\nThe results of this study show that because of the lack of long-term planning and excessive reliance on rain, most of the investigated regions have no stability in efficiency, and the efficiency of the regions changes in a zigzag manner over time. Among studied regions, only the Hashtrood region has high and stable efficiency, and other regions can follow the example of this region's cultivation method.\n\n\nOriginality/value\nTo the best of the authors’ knowledge, this study is the first one that uses the dynamic multi-stage network DEA considering every other year cultivation method and direct–indirect inputs in the agricultural section.\n","PeriodicalId":16349,"journal":{"name":"Journal of Modelling in Management","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modelling in Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/jm2-09-2022-0213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MANAGEMENT","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
Because of the importance of the wheat industry in the economy, a real-featured performance measurement approach is essential for the wheat production process. The purpose of this paper is to develop a data envelopment analysis (DEA) model that is fully compatible with the wheat production process so that managers and farmers can use it to evaluate the efficiency of wheat farms for strategic decisions.
Design/methodology/approach
A dynamic multi-stage network DEA model is developed to evaluate the efficiency of wheat production farms in short-term (two-year) and long-term (eight-year) periods.
Findings
The results of this study show that because of the lack of long-term planning and excessive reliance on rain, most of the investigated regions have no stability in efficiency, and the efficiency of the regions changes in a zigzag manner over time. Among studied regions, only the Hashtrood region has high and stable efficiency, and other regions can follow the example of this region's cultivation method.
Originality/value
To the best of the authors’ knowledge, this study is the first one that uses the dynamic multi-stage network DEA considering every other year cultivation method and direct–indirect inputs in the agricultural section.
期刊介绍:
Journal of Modelling in Management (JM2) provides a forum for academics and researchers with a strong interest in business and management modelling. The journal analyses the conceptual antecedents and theoretical underpinnings leading to research modelling processes which derive useful consequences in terms of management science, business and management implementation and applications. JM2 is focused on the utilization of management data, which is amenable to research modelling processes, and welcomes academic papers that not only encompass the whole research process (from conceptualization to managerial implications) but also make explicit the individual links between ''antecedents and modelling'' (how to tackle certain problems) and ''modelling and consequences'' (how to apply the models and draw appropriate conclusions). The journal is particularly interested in innovative methodological and statistical modelling processes and those models that result in clear and justified managerial decisions. JM2 specifically promotes and supports research writing, that engages in an academically rigorous manner, in areas related to research modelling such as: A priori theorizing conceptual models, Artificial intelligence, machine learning, Association rule mining, clustering, feature selection, Business analytics: Descriptive, Predictive, and Prescriptive Analytics, Causal analytics: structural equation modeling, partial least squares modeling, Computable general equilibrium models, Computer-based models, Data mining, data analytics with big data, Decision support systems and business intelligence, Econometric models, Fuzzy logic modeling, Generalized linear models, Multi-attribute decision-making models, Non-linear models, Optimization, Simulation models, Statistical decision models, Statistical inference making and probabilistic modeling, Text mining, web mining, and visual analytics, Uncertainty-based reasoning models.