{"title":"Deep Spatial Prediction via Heterogeneous Multi-source Self-supervision","authors":"Minxing Zhang, Dazhou Yu, Yun-Qing Li, Liang Zhao","doi":"10.1145/3605358","DOIUrl":null,"url":null,"abstract":"Spatial prediction is to predict the values of the targeted variable, such as PM2.5 values and temperature, at arbitrary locations based on the collected geospatial data. It greatly affects the key research topics in geoscience in terms of obtaining heterogeneous spatial information (e.g., soil conditions, precipitation rates, wheat yields) for geographic modeling and decision-making at local, regional, and global scales. In situ data, collected by ground-level in situ sensors, and remote sensing data, collected by satellite or aircraft, are two important data sources for this task. In situ data are relatively accurate while sparse and unevenly distributed. Remote sensing data cover large spatial areas, but are coarse with low spatiotemporal resolution and prone to interference. How to synergize the complementary strength of these two data types is still a grand challenge. Moreover, it is difficult to model the unknown spatial predictive mapping while handling the tradeoff between spatial autocorrelation and heterogeneity. Third, representing spatial relations without substantial information loss is also a critical issue. To address these challenges, we propose a novel Heterogeneous Self-supervised Spatial Prediction (HSSP) framework that synergizes multi-source data by minimizing the inconsistency between in situ and remote sensing observations. We propose a new deep geometric spatial interpolation model as the prediction backbone that automatically interpolates the values of the targeted variable at unknown locations based on existing observations by taking into account both distance and orientation information. Our proposed interpolator is proven to both be the general form of popular interpolation methods and preserve spatial information. The spatial prediction is enhanced by a novel error-compensation framework to capture the prediction inconsistency due to spatial heterogeneity. Extensive experiments have been conducted on real-world datasets and demonstrated our model’s superiority in performance over state-of-the-art models.","PeriodicalId":43641,"journal":{"name":"ACM Transactions on Spatial Algorithms and Systems","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Spatial Algorithms and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3605358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0
Abstract
Spatial prediction is to predict the values of the targeted variable, such as PM2.5 values and temperature, at arbitrary locations based on the collected geospatial data. It greatly affects the key research topics in geoscience in terms of obtaining heterogeneous spatial information (e.g., soil conditions, precipitation rates, wheat yields) for geographic modeling and decision-making at local, regional, and global scales. In situ data, collected by ground-level in situ sensors, and remote sensing data, collected by satellite or aircraft, are two important data sources for this task. In situ data are relatively accurate while sparse and unevenly distributed. Remote sensing data cover large spatial areas, but are coarse with low spatiotemporal resolution and prone to interference. How to synergize the complementary strength of these two data types is still a grand challenge. Moreover, it is difficult to model the unknown spatial predictive mapping while handling the tradeoff between spatial autocorrelation and heterogeneity. Third, representing spatial relations without substantial information loss is also a critical issue. To address these challenges, we propose a novel Heterogeneous Self-supervised Spatial Prediction (HSSP) framework that synergizes multi-source data by minimizing the inconsistency between in situ and remote sensing observations. We propose a new deep geometric spatial interpolation model as the prediction backbone that automatically interpolates the values of the targeted variable at unknown locations based on existing observations by taking into account both distance and orientation information. Our proposed interpolator is proven to both be the general form of popular interpolation methods and preserve spatial information. The spatial prediction is enhanced by a novel error-compensation framework to capture the prediction inconsistency due to spatial heterogeneity. Extensive experiments have been conducted on real-world datasets and demonstrated our model’s superiority in performance over state-of-the-art models.
期刊介绍:
ACM Transactions on Spatial Algorithms and Systems (TSAS) is a scholarly journal that publishes the highest quality papers on all aspects of spatial algorithms and systems and closely related disciplines. It has a multi-disciplinary perspective in that it spans a large number of areas where spatial data is manipulated or visualized (regardless of how it is specified - i.e., geometrically or textually) such as geography, geographic information systems (GIS), geospatial and spatiotemporal databases, spatial and metric indexing, location-based services, web-based spatial applications, geographic information retrieval (GIR), spatial reasoning and mining, security and privacy, as well as the related visual computing areas of computer graphics, computer vision, geometric modeling, and visualization where the spatial, geospatial, and spatiotemporal data is central.