Achievable multiplicity partitions in the inverse eigenvalue problem of a graph

IF 1 Q2 MATHEMATICS
Mohammad Adm, Shaun M. Fallat, Karen Meagher, S. Nasserasr, S. Plosker, Boting Yang
{"title":"Achievable multiplicity partitions in the inverse eigenvalue problem of a graph","authors":"Mohammad Adm, Shaun M. Fallat, Karen Meagher, S. Nasserasr, S. Plosker, Boting Yang","doi":"10.1515/spma-2019-0022","DOIUrl":null,"url":null,"abstract":"Abstract Associated to a graph G is a set 𝒮(G) of all real-valued symmetric matrices whose off-diagonal entries are nonzero precisely when the corresponding vertices of the graph are adjacent, and the diagonal entries are free to be chosen. If G has n vertices, then the multiplicities of the eigenvalues of any matrix in 𝒮 (G) partition n; this is called a multiplicity partition. We study graphs for which a multiplicity partition with only two integers is possible. The graphs G for which there is a matrix in 𝒮 (G) with partitions [n − 2, 2] have been characterized. We find families of graphs G for which there is a matrix in 𝒮 (G) with multiplicity partition [n − k, k] for k ≥ 2. We focus on generalizations of the complete multipartite graphs. We provide some methods to construct families of graphs with given multiplicity partitions starting from smaller such graphs. We also give constructions for graphs with matrix in 𝒮 (G) with multiplicity partition [n − k, k] to show the complexities of characterizing these graphs.","PeriodicalId":43276,"journal":{"name":"Special Matrices","volume":"7 1","pages":"276 - 290"},"PeriodicalIF":1.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/spma-2019-0022","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Special Matrices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/spma-2019-0022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7

Abstract

Abstract Associated to a graph G is a set 𝒮(G) of all real-valued symmetric matrices whose off-diagonal entries are nonzero precisely when the corresponding vertices of the graph are adjacent, and the diagonal entries are free to be chosen. If G has n vertices, then the multiplicities of the eigenvalues of any matrix in 𝒮 (G) partition n; this is called a multiplicity partition. We study graphs for which a multiplicity partition with only two integers is possible. The graphs G for which there is a matrix in 𝒮 (G) with partitions [n − 2, 2] have been characterized. We find families of graphs G for which there is a matrix in 𝒮 (G) with multiplicity partition [n − k, k] for k ≥ 2. We focus on generalizations of the complete multipartite graphs. We provide some methods to construct families of graphs with given multiplicity partitions starting from smaller such graphs. We also give constructions for graphs with matrix in 𝒮 (G) with multiplicity partition [n − k, k] to show the complexities of characterizing these graphs.
图的特征值反问题中可实现的多重划分
与图G相关联的是所有实值对称矩阵的集合𝒮(G),这些实值对称矩阵的非对角线项在图的相应顶点相邻时精确地是非零的,并且对角线项可以自由选择。如果G有n个顶点,那么在𝒮(G)中任意矩阵的特征值的多重度划分n;这被称为多重划分。我们研究了可能只有两个整数的多重划分的图。图G在𝒮(G)中存在一个矩阵,其分区为[n−2,2]。我们找到了在𝒮(G)中存在一个矩阵且k≥2时具有多重划分[n−k, k]的图G族。我们着重于完全多部图的推广。我们提供了一些方法来构造具有给定多重分区的图族,从较小的图开始。我们还给出了矩阵在𝒮(G)中具有多重划分[n−k, k]的图的构造,以表明表征这些图的复杂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Special Matrices
Special Matrices MATHEMATICS-
CiteScore
1.10
自引率
20.00%
发文量
14
审稿时长
8 weeks
期刊介绍: Special Matrices publishes original articles of wide significance and originality in all areas of research involving structured matrices present in various branches of pure and applied mathematics and their noteworthy applications in physics, engineering, and other sciences. Special Matrices provides a hub for all researchers working across structured matrices to present their discoveries, and to be a forum for the discussion of the important issues in this vibrant area of matrix theory. Special Matrices brings together in one place major contributions to structured matrices and their applications. All the manuscripts are considered by originality, scientific importance and interest to a general mathematical audience. The journal also provides secure archiving by De Gruyter and the independent archiving service Portico.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信