Applications of Siegel’s lemma to a system of linear forms and its minimal points

Q4 Mathematics
J. Schleischitz
{"title":"Applications of Siegel’s lemma to a system of\nlinear forms and its minimal points","authors":"J. Schleischitz","doi":"10.2140/moscow.2022.11.125","DOIUrl":null,"url":null,"abstract":"Consider a real matrix $\\Theta$ consisting of rows $(\\theta_{i,1},\\ldots,\\theta_{i,n})$, for $1\\leq i\\leq m$. The problem of making the system linear forms $x_{1}\\theta_{i,1}+\\cdots+x_{n}\\theta_{i,n}-y_{i}$ for integers $x_{j},y_{i}$ small naturally induces an ordinary and a uniform exponent of approximation, denoted by $w(\\Theta)$ and $\\widehat{w}(\\Theta)$ respectively. For $m=1$, a sharp lower bound for the ratio $w(\\Theta)/\\widehat{w}(\\Theta)$ was recently established by Marnat and Moshchevitin. We give a short, new proof of this result upon a hypothesis on the best approximation integer vectors associated to $\\Theta$. Our conditional result extends to general $m>1$ (but may not be optimal in this case). Moreover, our hypothesis is always satisfied in particular for $m=1, n=2$ and thereby unconditionally confirms a previous observation of Jarn\\'ik. We formulate our results in the more general context of approximation of subspaces of Euclidean spaces by lattices. We further establish criteria upon which a given number $\\ell$ of consecutive best approximation vectors are linearly independent. Our method is based on Siegel's Lemma.","PeriodicalId":36590,"journal":{"name":"Moscow Journal of Combinatorics and Number Theory","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow Journal of Combinatorics and Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/moscow.2022.11.125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 4

Abstract

Consider a real matrix $\Theta$ consisting of rows $(\theta_{i,1},\ldots,\theta_{i,n})$, for $1\leq i\leq m$. The problem of making the system linear forms $x_{1}\theta_{i,1}+\cdots+x_{n}\theta_{i,n}-y_{i}$ for integers $x_{j},y_{i}$ small naturally induces an ordinary and a uniform exponent of approximation, denoted by $w(\Theta)$ and $\widehat{w}(\Theta)$ respectively. For $m=1$, a sharp lower bound for the ratio $w(\Theta)/\widehat{w}(\Theta)$ was recently established by Marnat and Moshchevitin. We give a short, new proof of this result upon a hypothesis on the best approximation integer vectors associated to $\Theta$. Our conditional result extends to general $m>1$ (but may not be optimal in this case). Moreover, our hypothesis is always satisfied in particular for $m=1, n=2$ and thereby unconditionally confirms a previous observation of Jarn\'ik. We formulate our results in the more general context of approximation of subspaces of Euclidean spaces by lattices. We further establish criteria upon which a given number $\ell$ of consecutive best approximation vectors are linearly independent. Our method is based on Siegel's Lemma.
Siegel引理在线性形式及其极小点系统中的应用
考虑由行$(\teta{i,1},\ldots,\teta{i,n})$组成的实矩阵$\Theta$,对于$1\leq i\leq m$。使系统线性形式$x_{1}\ta_{i,1}+\cdots+x_{n}\tθ的问题_{i,n}-y_{i} $对于整数$x_{j},y_{i}$small自然地导出一个普通和一致的近似指数,分别用$w(\Theta)$和$\widehat{w}(\Theda)$表示。对于$m=1$,Marnat和Moshchevitin最近建立了比率$w(\Theta)/\widehat{w}(\ Theta)$的急剧下限。基于与$\Theta$相关的最佳近似整数向量的假设,我们给出了这一结果的一个简短的新证明。我们的条件结果扩展到一般$m>1$(但在这种情况下可能不是最优的)。此外,我们的假设总是满足的,特别是对于$m=1,n=2$,从而无条件地证实了之前对Jarn’ik的观察。我们在格逼近欧几里得空间的子空间的更一般的上下文中公式化我们的结果。我们进一步建立了给定数量的连续最佳逼近向量$\ell$线性无关的准则。我们的方法是基于西格尔引理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Moscow Journal of Combinatorics and Number Theory
Moscow Journal of Combinatorics and Number Theory Mathematics-Algebra and Number Theory
CiteScore
0.80
自引率
0.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信