Lie Symmetry Analysis and Explicit Solutions for the Time-Fractional Regularized Long-Wave Equation

IF 1.4 Q2 MATHEMATICS, APPLIED
N. Maarouf, Hicham Maadan, K. Hilal
{"title":"Lie Symmetry Analysis and Explicit Solutions for the Time-Fractional Regularized Long-Wave Equation","authors":"N. Maarouf, Hicham Maadan, K. Hilal","doi":"10.1155/2021/6614231","DOIUrl":null,"url":null,"abstract":"This paper systematically investigates the Lie group analysis method of the time-fractional regularized long-wave (RLW) equation with Riemann–Liouville fractional derivative. The vector fields and similarity reductions of the time-fractional (RLW) equation are obtained. It is shown that the governing equation can be transformed into a fractional ordinary differential equation with a new independent variable, where the fractional derivatives are in Erdelyi–Kober sense. Furthermore, the explicit analytic solutions of the time-fractional (RLW) equation are obtained using the power series expansion method. Finally, some graphical features were presented to give a visual interpretation of the solutions.","PeriodicalId":55967,"journal":{"name":"International Journal of Differential Equations","volume":" ","pages":"1-11"},"PeriodicalIF":1.4000,"publicationDate":"2021-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2021/6614231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 9

Abstract

This paper systematically investigates the Lie group analysis method of the time-fractional regularized long-wave (RLW) equation with Riemann–Liouville fractional derivative. The vector fields and similarity reductions of the time-fractional (RLW) equation are obtained. It is shown that the governing equation can be transformed into a fractional ordinary differential equation with a new independent variable, where the fractional derivatives are in Erdelyi–Kober sense. Furthermore, the explicit analytic solutions of the time-fractional (RLW) equation are obtained using the power series expansion method. Finally, some graphical features were presented to give a visual interpretation of the solutions.
时间分数阶正则化长波方程的李对称分析与显式解
本文系统地研究了具有Riemann-Liouville分数导数的时间分数正则长波(RLW)方程的李群分析方法。得到了时间分数(RLW)方程的向量场和相似性约简。结果表明,控制方程可以转化为一个具有新自变量的分数阶常微分方程,其中分数阶导数在Erdelyi–Kober意义上。此外,利用幂级数展开法得到了时间分数(RLW)方程的显式解析解。最后,给出了一些图形特征,以直观地解释解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
20
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信