First order homogeneous dynamical systems 1: theoretical formulation

IF 0.7 Q4 ENGINEERING, CIVIL
Umesh Kumar Pandey, G. Benipal
{"title":"First order homogeneous dynamical systems 1: theoretical formulation","authors":"Umesh Kumar Pandey, G. Benipal","doi":"10.1504/IJSTRUCTE.2017.10007467","DOIUrl":null,"url":null,"abstract":"Of late, the attention of the dynamicists has increasingly been focused on the multi-degree of freedom (MDOF) nonlinear dynamical systems. In the present paper, a new class of conservative two-DOF nonlinear dynamical systems - first order homogeneous dynamical (FOHD) systems - has been proposed. This investigation is motivated by two-DOF cracked concrete beams undergoing small deformations. For these mechanical systems, the nodal forces are functions homogeneous of order one of the nodal displacements and vice-versa. Under assumptions of lumped nodal masses and classical damping, the equations of motion have been derived in the paper. The nodal displacement space has been partitioned into four elastically-distinct regions. Within the two nonlinear elastic regions, the stiffness and damping coefficients as well as the modal frequencies have been shown to vary continuously but remain constant within the two linear regions. Peculiar characteristics distinguishing the FOHD systems from other known MDOF nonlinear dynamical systems have been identified. Theoretical significance of the proposed FOHD systems in the general nonlinear dynamical systems theory has been brought out. The issues such as empirical validation of the predicted dynamical response and the practical relevance of the work done for the concrete beams under working loads have also been discussed.","PeriodicalId":38785,"journal":{"name":"International Journal of Structural Engineering","volume":"8 1","pages":"187"},"PeriodicalIF":0.7000,"publicationDate":"2017-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Structural Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJSTRUCTE.2017.10007467","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 1

Abstract

Of late, the attention of the dynamicists has increasingly been focused on the multi-degree of freedom (MDOF) nonlinear dynamical systems. In the present paper, a new class of conservative two-DOF nonlinear dynamical systems - first order homogeneous dynamical (FOHD) systems - has been proposed. This investigation is motivated by two-DOF cracked concrete beams undergoing small deformations. For these mechanical systems, the nodal forces are functions homogeneous of order one of the nodal displacements and vice-versa. Under assumptions of lumped nodal masses and classical damping, the equations of motion have been derived in the paper. The nodal displacement space has been partitioned into four elastically-distinct regions. Within the two nonlinear elastic regions, the stiffness and damping coefficients as well as the modal frequencies have been shown to vary continuously but remain constant within the two linear regions. Peculiar characteristics distinguishing the FOHD systems from other known MDOF nonlinear dynamical systems have been identified. Theoretical significance of the proposed FOHD systems in the general nonlinear dynamical systems theory has been brought out. The issues such as empirical validation of the predicted dynamical response and the practical relevance of the work done for the concrete beams under working loads have also been discussed.
一阶齐次动力系统1:理论公式
近年来,动力学家越来越关注多自由度非线性动力系统。本文提出了一类新的保守性二自由度非线性动力系统——一阶齐次动力系统。这项研究的动机是两个自由度裂纹混凝土梁经历小变形。对于这些机械系统,节点力是节点位移一阶齐次函数,反之亦然。在集总节点质量和经典阻尼的假设下,导出了运动方程。节点位移空间被划分为四个弹性不同的区域。在两个非线性弹性区域内,刚度和阻尼系数以及模态频率已被证明是连续变化的,但在两个线性区域内保持不变。已经确定了将FOHD系统与其他已知的MDOF非线性动力学系统区分开来的独特特性。指出了所提出的FOHD系统在一般非线性动力系统理论中的理论意义。还讨论了预测动力响应的经验验证以及混凝土梁在工作荷载下所做工作的实际相关性等问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Structural Engineering
International Journal of Structural Engineering Engineering-Civil and Structural Engineering
CiteScore
2.40
自引率
23.10%
发文量
24
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信