{"title":"Elevated level of microRNA-210 at the initiation of muscular regeneration in acetic acid-induced non-ischemic skeletal muscular injury in mice","authors":"Y. Takai, Takeshi Watanabe, T. Sano","doi":"10.1293/tox.2021-0061","DOIUrl":null,"url":null,"abstract":"The alteration in microRNA-210 level, a hypoxia-inducible microRNA, is not well known in non-ischemic tissue injury. In this study, we characterized the histopathological time course of acetic acid-induced skeletal muscle injury as a non-ischemic tissue injury model and investigated the expression of microRNA-210, hypoxia-inducible factor 1α, and growth factors using quantitative polymerase chain reaction analysis. After a single intramuscular dose of 3% (v/v) acetic acid to C57BL/6J mice, focal coagulative necrosis of muscle fibers was noted from 3 h after dosing and infiltration of F4/80 and Galectin-3 positive M2 macrophage was noted at 1 d after dosing. Muscular regeneration was initiated from 3 d, when M2 macrophage infiltration was most prominent, till 14 d after dosing. Hif1α and Hgf expression increased from 3 h onwards, and microRNA-210 level increased after 3 d after the treatment. However, no clear elevation in the levels of Igf1 or Vegf was observed. The infiltrative macrophages and regenerative muscle fibers were positive for hypoxia-inducible factor 1α, microRNA-210, and hepatocyte growth factor as assessed by immunohistochemistry or in situ hybridization. In this study, dominant infiltration of M2 macrophages at muscular necrosis and subsequent regeneration after a single intramuscular injection of acetic acid in mice were observed. The increase in hif1α level was observed just after the muscular injury in this non-ischemic tissue injury model, and the elevation in microRNA-210 level was noted at the initiation of tissue regeneration, indicating its effects on tissue protection and repair.","PeriodicalId":17437,"journal":{"name":"Journal of Toxicologic Pathology","volume":"35 1","pages":"183 - 192"},"PeriodicalIF":0.9000,"publicationDate":"2021-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Toxicologic Pathology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1293/tox.2021-0061","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PATHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The alteration in microRNA-210 level, a hypoxia-inducible microRNA, is not well known in non-ischemic tissue injury. In this study, we characterized the histopathological time course of acetic acid-induced skeletal muscle injury as a non-ischemic tissue injury model and investigated the expression of microRNA-210, hypoxia-inducible factor 1α, and growth factors using quantitative polymerase chain reaction analysis. After a single intramuscular dose of 3% (v/v) acetic acid to C57BL/6J mice, focal coagulative necrosis of muscle fibers was noted from 3 h after dosing and infiltration of F4/80 and Galectin-3 positive M2 macrophage was noted at 1 d after dosing. Muscular regeneration was initiated from 3 d, when M2 macrophage infiltration was most prominent, till 14 d after dosing. Hif1α and Hgf expression increased from 3 h onwards, and microRNA-210 level increased after 3 d after the treatment. However, no clear elevation in the levels of Igf1 or Vegf was observed. The infiltrative macrophages and regenerative muscle fibers were positive for hypoxia-inducible factor 1α, microRNA-210, and hepatocyte growth factor as assessed by immunohistochemistry or in situ hybridization. In this study, dominant infiltration of M2 macrophages at muscular necrosis and subsequent regeneration after a single intramuscular injection of acetic acid in mice were observed. The increase in hif1α level was observed just after the muscular injury in this non-ischemic tissue injury model, and the elevation in microRNA-210 level was noted at the initiation of tissue regeneration, indicating its effects on tissue protection and repair.
期刊介绍:
JTP is a scientific journal that publishes original studies in the field of toxicological pathology and in a wide variety of other related fields. The main scope of the journal is listed below.
Administrative Opinions of Policymakers and Regulatory Agencies
Adverse Events
Carcinogenesis
Data of A Predominantly Negative Nature
Drug-Induced Hematologic Toxicity
Embryological Pathology
High Throughput Pathology
Historical Data of Experimental Animals
Immunohistochemical Analysis
Molecular Pathology
Nomenclature of Lesions
Non-mammal Toxicity Study
Result or Lesion Induced by Chemicals of Which Names Hidden on Account of the Authors
Technology and Methodology Related to Toxicological Pathology
Tumor Pathology; Neoplasia and Hyperplasia
Ultrastructural Analysis
Use of Animal Models.