Best predictors in logarithmic distance between positive random variables

IF 0.3 Q4 MATHEMATICS, APPLIED
H. Gzyl
{"title":"Best predictors in logarithmic distance between positive random variables","authors":"H. Gzyl","doi":"10.2478/jamsi-2019-0006","DOIUrl":null,"url":null,"abstract":"Abstract The metric properties of the set in which random variables take their values lead to relevant probabilistic concepts. For example, the mean of a random variable is a best predictor in that it minimizes the L2 distance between a point and a random variable. Similarly, the median is the same concept but when the distance is measured by the L1 norm. Also, a geodesic distance can be defined on the cone of strictly positive vectors in ℝn in such a way that, the minimizer of the distance between a point and a collection of points is their geometric mean. That geodesic distance induces a distance on the class of strictly positive random variables, which in turn leads to an interesting notions of conditional expectation (or best predictors) and their estimators. It also leads to different versions of the Law of Large Numbers and the Central Limit Theorem. For example, the lognormal variables appear as the analogue of the Gaussian variables for version of the Central Limit Theorem in the logarithmic distance.","PeriodicalId":43016,"journal":{"name":"Journal of Applied Mathematics Statistics and Informatics","volume":"15 1","pages":"15 - 28"},"PeriodicalIF":0.3000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mathematics Statistics and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/jamsi-2019-0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract The metric properties of the set in which random variables take their values lead to relevant probabilistic concepts. For example, the mean of a random variable is a best predictor in that it minimizes the L2 distance between a point and a random variable. Similarly, the median is the same concept but when the distance is measured by the L1 norm. Also, a geodesic distance can be defined on the cone of strictly positive vectors in ℝn in such a way that, the minimizer of the distance between a point and a collection of points is their geometric mean. That geodesic distance induces a distance on the class of strictly positive random variables, which in turn leads to an interesting notions of conditional expectation (or best predictors) and their estimators. It also leads to different versions of the Law of Large Numbers and the Central Limit Theorem. For example, the lognormal variables appear as the analogue of the Gaussian variables for version of the Central Limit Theorem in the logarithmic distance.
正随机变量之间的对数距离的最佳预测
摘要随机变量取值的集合的度量性质导致了相关的概率概念。例如,随机变量的平均值是最好的预测因子,因为它最小化了点和随机变量之间的L2距离。类似地,中值是相同的概念,但当距离是通过L1范数来测量时。此外,在严格正向量的锥上可以定义测地距离ℝn,这样,一个点和一组点之间距离的最小值就是它们的几何平均值。测地距离在一类严格正随机变量上引发了一个距离,这反过来又引出了条件期望(或最佳预测因子)及其估计量的有趣概念。它也导致了不同版本的大数定律和中心极限定理。例如,对数正态变量在对数距离中表现为中心极限定理版本的高斯变量的模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
8
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信