ASHRAE RP-1814: Actual energy performance of secondary schools designed to comply with ASHRAE 90.1-2010, Part I – energy use and cost indices comparison
IF 1.7 4区 工程技术Q3 CONSTRUCTION & BUILDING TECHNOLOGY
Zhihong Pang, Maddie Koolbeck, Xiaohui Zhou, Zheng D. O'Neill PhD
{"title":"ASHRAE RP-1814: Actual energy performance of secondary schools designed to comply with ASHRAE 90.1-2010, Part I – energy use and cost indices comparison","authors":"Zhihong Pang, Maddie Koolbeck, Xiaohui Zhou, Zheng D. O'Neill PhD","doi":"10.1080/23744731.2023.2194839","DOIUrl":null,"url":null,"abstract":"K-12 school buildings constitute a substantial portion of commercial buildings in the U.S. and are responsible for significant energy consumption. This paper presents a nationwide study to investigate the actual energy performance of secondary school buildings constructed per the requirements of ASHRAE Standard 90.1 – 2004 and − 2010. A total of 73 building candidates are included in the analysis after careful screening and inspection, which covers eight ASHRAE climate zones. A Python-based Change Point Model (CPM) is developed to normalize the energy consumption data of the selected 73 buildings following the ASHRAE procedure. The energy use indices (EUI) and energy cost indices (ECI) of single buildings and the aggregated average of all buildings are computed to evaluate the actual energy performance of secondary school buildings. The results suggest that the actual national aggregated average EUI of secondary school buildings is 61 and 41 kBTU/(sq. ft. yr) for buildings designed per ASHRAE Standard 90.1 – 2004 and − 2010, respectively. This indicates a 20% saving in EUI and ECI for the update from the 2004 standard to 2010 one in real buildings, compared with a 38% saving-ratio obtained by Pacific Northwest National Laboratory (PNNL) in a nationwide simulation study.","PeriodicalId":21556,"journal":{"name":"Science and Technology for the Built Environment","volume":"29 1","pages":"402 - 423"},"PeriodicalIF":1.7000,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology for the Built Environment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/23744731.2023.2194839","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
K-12 school buildings constitute a substantial portion of commercial buildings in the U.S. and are responsible for significant energy consumption. This paper presents a nationwide study to investigate the actual energy performance of secondary school buildings constructed per the requirements of ASHRAE Standard 90.1 – 2004 and − 2010. A total of 73 building candidates are included in the analysis after careful screening and inspection, which covers eight ASHRAE climate zones. A Python-based Change Point Model (CPM) is developed to normalize the energy consumption data of the selected 73 buildings following the ASHRAE procedure. The energy use indices (EUI) and energy cost indices (ECI) of single buildings and the aggregated average of all buildings are computed to evaluate the actual energy performance of secondary school buildings. The results suggest that the actual national aggregated average EUI of secondary school buildings is 61 and 41 kBTU/(sq. ft. yr) for buildings designed per ASHRAE Standard 90.1 – 2004 and − 2010, respectively. This indicates a 20% saving in EUI and ECI for the update from the 2004 standard to 2010 one in real buildings, compared with a 38% saving-ratio obtained by Pacific Northwest National Laboratory (PNNL) in a nationwide simulation study.
期刊介绍:
Science and Technology for the Built Environment (formerly HVAC&R Research) is ASHRAE’s archival research publication, offering comprehensive reporting of original research in science and technology related to the stationary and mobile built environment, including indoor environmental quality, thermodynamic and energy system dynamics, materials properties, refrigerants, renewable and traditional energy systems and related processes and concepts, integrated built environmental system design approaches and tools, simulation approaches and algorithms, building enclosure assemblies, and systems for minimizing and regulating space heating and cooling modes. The journal features review articles that critically assess existing literature and point out future research directions.